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Цеолиты представляют собой широкий класс 
микропористых материалов с  упорядоченной 
структурой, состоящей из тетраэдров AlO4 и SiO4. 
В настоящее время цеолиты получили широкое 
практическое применение в  качестве адсорбен-
тов, гетерогенных катализаторов или их компо-
нентов благодаря развитой поверхности, хоро-
шей термической и  химической стабильности, 
механической прочности [1].

Цеолит ZSM-12 со  структурой MTW облада-
ет одномерными 12-членными каналами с  раз-
мером пор 5,6 × 6,1 Å [2], что придает материалу 
специфическую селективность по  отношению 
к ряду соединений. Благодаря этому, а также на-
личию кислотных центров катализаторы на  ос-
нове ZSM-12  обладают высокой активностью 
в  реакциях диспропорционирования [3] и  ал-
килирования ароматических соединений [4],  
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гидроизомеризации парафинов [5, 6], крекинга 
алканов [7], превращения метанола [8].

Особый интерес представляет настройка тон-
кой структуры данных материалов, что может 
привести к  достижению оптимального сочета-
ния текстурных, структурных, морфологических 
и кислотных свойств, приводящих к значитель-
ному положительному воздействию на  характе-
ристики катализаторов, получаемых на  основе 
таких материалов [9]. Например, проведение 
изоморфного замещения атомов Al на  атомы  
Ga [10], Ti [11], Zr [12], Sn [13], V [14] и B [15] при-
водит к увеличению концентрации как льюисов-
ских, так и  брэнстедовских слабых и  сильных 
кислотных центров. В свою очередь, модифика-
ция метода гидротермального синтеза ZSM-12  
добавлением спиртов, в  том числе полиолов, 
описана в [16]. Установлено, что введение таких 
модификаторов, как низшие полиолы (этилен-
гликоль, глицерин), а также полиэтиленгликоля 
(ПЭГ) позволяло регулировать размеры кристал-
литов материалов. 

В  данной работе нами исследован эффект 
добавления пентаэритрита на кислотные и мор-
фологические свойства цеолита ZSM-12, по-
лученного в  ходе гидротермального синтеза. 
Для сравнения кислотных свойств материалов 
ZSM-12 и ZSM-12/ПЭ проведены эксперименты 
по кислотно-катализируемой ацетализации.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В  синтезе цеолитов ZSM-12 применяли 
следующие реактивы: коллоидный кремнезем  
LUDOX HS-40 (х.ч., 40 мас.%, Sigma-Aldrich), 
Al2(SO4)‧18H2O (х.ч., Sigma-Aldrich), NaOH 
(х.ч., ООО ТД «Компонент-Реактив»), хлорид 
метилтриэтиламмония [NCH3(C2H5)3]Cl (х.ч.,  
97%, Sigma-Aldrich,), NH4NO3 (ч., ООО ТД 
«ХИММЕД»), пентаэритрит (С5Н12О4, х.ч., 
Sigma-Aldrich), фурфурол (С5Н4О2, х.ч., Sigma-
Aldrich) и  этиленгликоль (С2Н6О2, х.ч., Sigma-
Aldrich). 

Стандартная методика гидротермального 
синтеза цеолита ZSM-12 [17] включает: приго-
товление геля путем добавления раствора А, со-
стоящего из 12,6 г дистиллированной воды, 0,4 г 
Al2(SO4)3 ‧ 18H2O, 1 г NaOH и 3,3 г [NCH3(C2H5)3]Cl, 
применяемого в  качестве темплата, к  раствору 

1 https://materialsdata.com/prodjd.html

Б, состоящему из  25,2  г 40 мас.% коллоидного 
раствора SiO2 марки LUDOX НS-40 и 10,1 г ди-
стиллированной воды; перемешивание состав-
ляющих до образования гомогенной смеси. По-
лученный гель термостатировали (155°C, 120 ч), 
фильтровали, промывали дистиллированной 
H2O, сушили (110°С, 12 ч) и прокаливали (550°С, 
12  ч). В  процессе синтеза цеолита ZSM-12/ПЭ 
в раствор А добавляли 1 г пентаэритрита.

С целью замещения катионов натрия на ионы 
аммония в структуре цеолита проводили проце-
дуру ионного обмена с применением 1 М водного 
раствора NH4NO3 в течение 17 ч при комнатной 
температуре. Реакционную смесь фильтрова-
ли, промывали дистиллированной H2O, сушили 
(110°С, 12  ч), прокаливали (500°С, 4  ч). В  ре-
зультате ионного обмена были получены белые 
порошки Н-формы цеолитов ZSM-12. Далее 
в тексте статьи цеолиты обозначены как ZSM-12, 
синтезированный с применением темплата хло-
рида метилтриэтиламмония, и ZSM-12/ПЭ, син-
тезированный с применением темплата хлорида 
метилтриэтиламмония и добавки пентаэритрита. 

Рентгенофазовый анализ (РФА) проводили 
на  приборе Rigaku Rotaflex D/max-RC (Rigaku, 
Токио, Япония) с применением CuKα-излучения 
(λ = 0,154 нм). Дифракционную картину образца 
регистрировали в угловом диапазоне 2θ = 3°–50° 
с шагом 0,04° и скоростью сканирования 2° мин–1.  
Для описания рефлексов, соответствующих кри-
сталлической и  аморфной фазам, применяли 
функцию псевдо-Фойта  — линейную комбина-
цию функций Лоренца и Гаусса. Расчет степени 
кристалличности  CI производили в  программе 
MDI Jade 6,51 по следующей формуле:

CI
A
A

= CR

SUM

,

 
                             (1)

где ACR  — сумма интегральных интенсивностей 
(площадей) рефлексов, соответствующих кри-
сталлической фазе, ASUM — суммарная площадь 
всех рефлексов дифрактограммы. 

Регистрацию изотерм адсорбции–десорбции 
азота проводили при 77 K на анализаторе удель-
ной поверхности и  пористости Gemini  VII  2390 
(V1.02t) (Micromeritics, Gemini, США). Перед из-
мерениями образцы дегазировали в измеритель-
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ной ячейке прибора при 300°С в течение 6 ч. Для 
расчета площади поверхности в интервале отно-
сительных давлений р/р0  = 0,05–0,2 применяли 
метод Брунауэра–Эммета–Теллера. Суммарный 
объем пор определяли исходя из количества ад-
сорбированного азота при относительном давле-
нии р/р0 = 0,95.

Микрофотографии образцов (РЭМ) получа-
ли на  настольном сканирующем электронном 
микроскопе Hitachi TM3030 (Япония). Инфор-
мацию о  локальном элементном составе и  рас-
пределении элементов на  поверхности образца 
получали с  помощью энергодисперсионного 
спектрометра (EDX, Япония) с  программно- 
аппаратным комплексом Quantax 70.

Структуру и морфологию поверхности образ-
цов изучали методом просвечивающей электрон-
ной микроскопии (ПЭМ) на  приборе LEO AB 
OMEGA (Япония) с увеличением от 80 до 500 000 
и разрешением изображения 0,2–0,34 нм.

Регистрацию спектров  ЯМР под вращатель-
ным магнитным углом проводили на спектромет
ре Brucker AVANCE-II  400 WB (Varian, США) 
с  магнитным полем 9,4 Тc, что соответствует 
рабочим частотам ν(27Al) = 104,2 MГц и ν(29Si) = 
79,5 MГц, с применением датчика с вращением 
под «магическим» углом (диаметр ротора — 4 мм, 
частота вращения — 12 000 Гц). Перед регистра-
цией воздушно-сухие образцы выдерживали 
в эксикаторе с 25%-ным водным раствором NH3 
в течение 24 ч при комнатной температуре. Спек-
тры на ядрах 27Al регистрировали с применением 
одноимпульсной методики (15-градусный им-
пульс) со  следующими параметрами: длитель-
ность возбуждения  — 0,8 мкс; количество ска-
нов  — 1024; интервал между сканами  — 0,5  с. 
В  качестве внешнего стандарта (0  м.д.) приме-
няли 1 М водный раствор Al(NO3)3‧9H2O. Спек-
тры на ядрах 29Si регистрировали с применением 
одноимпульсной методики (90-градусный им-
пульс) со  следующими параметрами: длитель-
ность возбуждения — 4 мкс; количество сканов — 
256; время между импульсами — 60 с). В качестве 
внешнего стандарта химического сдвига приме-
няли Si(CH3)4 — 0 м.д.

Анализ цеолитов методом ИК-спектроскопии 
с  Фурье-преобразованиями выполнен на  при-
боре Nicolet IR2000 (Thermo Scientific, США) 
с применением метода многократного нарушен-
ного полного внутреннего отражения при помо-

щи приставки Multireflection HATR, содержащей 
кристалл ZnSe 45° для различных диапазонов 
длин волн с разрешением 4 см–1.

Кислотность образцов анализировали на при-
боре AutoChem HP2950 (Micromeritics, США). 
Исследуемый образец (фракция 0,25–1  мм) 
массой 0,15–0,2  г помещали в  кварцевый реак-
тор. Образец продували Не при 500°С в течение 
60  мин и  насыщенным NH3 в  смеси NH3/N2 
(10% NH3) в течение 30 мин при 60°С. Для уда-
ления лишнего NH3 осуществляли пропускание 
инертного газа со скоростью потока 30 мл мин–1 
при 100°С в течение 60 мин. Анализ образца про-
водили в  токе He  в  температурном интервале 
100–800°С со скоростью нагрева 8°С‧мин–1. Ре-
гистрацию десорбированного NH3 осуществляли 
детектором по теплопроводности.

Концентрацию кислотных центров в образцах 
определяли с  применением ИК-спектроскопии 
адсорбированного пиридина. ИК-спектры реги-
стрировали на приборе Nicolet Protégé 460 FT-IR 
(Thermo-Nicolet, США) с  оптическим разреше-
нием 4  см–1 и  диапазоном 400–4000  см–1. Об-
разцы в виде дисков (d = 1,6 см, ρ ~ 10 мг см–2) 
активировали в ИК-ячейке при 400°С (скорость 
нагрева 7,5°С‧мин–1) в  течение 2  ч при  давле-
нии 10–5 Торр. Адсорбцию молекул-зондов про-
водили при  150°С и  давлении 2 Торр пиридина 
в течение 30 мин. По окончании цикла адсорб-
ции проводили десорбцию пиридина при 150°С 
в  течение 15  мин. Концентрацию кислотных 
центров Бренстеда и Льюиса определяли по ин-
тенсивности полос адсорбированного пиридина 
(1545 и 1450 см–1 соответственно).

Анализ жидких продуктов реакции ацетали-
зации осуществляли методом  ГЖХ на  хромато-
графе «Хромос ГХ-1000» c пламенно-ионизаци-
онным детектором, капиллярной колонкой 50 м, 
заполненной фазой DB-5, при  программирова-
нии температуры от 60 до 230°С, газ-носитель — 
гелий.

Каталитические эксперименты по  ацетализа-
ции проводили в стеклянных виалах. В типичном 
эксперименте в виалу загружали 100 мг катализа-
тора на основе цеолита ZSM-12/ПЭ или ZSM-12, 
фурфурол (0,5  мл, 0,006 моль) и  этиленгликоль 
(3,4  мл, 0,06 моль), затем помещали виалу в  ав-
токлав, продували его аргоном и герметизирова-
ли. Реакции проводили при  заданной темпера-
туре при постоянном перемешивании с частотой  
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вращения привода магнитной мешалки 700  об.  
в мин в течение 6 ч. После охлаждения и разгерме-
тизации автоклава к реакционной смеси добавля-
ли внутренний стандарт (н-додекан) и перемеши-
вали смесь около 30 с, после чего анализировали 
методом ГЖХ, определяя выход ацеталя.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Эффект добавления пентаэритрита 
при проведении гидротермального синтеза 

на характеристики получаемого цеолита ZSM-12

На  дифрактограммах синтезированных мате-
риалов ZSM-12/ПЭ и ZSM-12 (образец сравнения) 
идентифицированы рефлексы, характерные для 
фазы цеолита ZSM-12 (структурный тип  MTW) 
с  моноклинной сингонией и  пространственной 
группой С2/с (рис. 1a) [17, 18], т.е. из данных диф-
рактограммы следует, что пентаэритрит не влияет 
на чистоту фазы цеолита ZSM-12.

Изотерма I типа с петлей гистерезиса Н4 в об-
ласти низких давлений (р/р0  = 0,05–0,2) под-
тверждает наличие развитой микропористой 
текстуры в обоих образцах (рис. 1б, табл. 1). Уве-
личение объема микропор в  ZSM-12/ПЭ, ско-
рее всего, обусловлено не  только повышением 
степени кристалличности материала, но  и  уда-
лением пентаэритрита из  цеолита при  отжиге. 
Поглощение азота в  области высоких давлений 

(р/р0 = 0,4–1) за счет капиллярной конденсации 
подтверждает наличие мезопор, образующихся 
при  агрегации кристаллитов в  процессе гидро-
термального синтеза [19]. 

Отношение содержания Si/Al в синтезирован-
ных образцах, рассчитанное по данным элемент-
ного анализа, ниже, чем отношение Si/Al реак-
ционной смеси на  стадии приготовления геля, 
что может быть связано с  неполным переходом 
кремния из  коллоидной формы в  кристалличе-
скую фазу цеолита в  процессе кристаллизации, 
что согласуется с рядом работ [20, 21].

В ИК-спектрах (рис. 2) присутствует ряд харак-
терных для цеолита ZSM-12 полос поглощения 
в области 1300–500 см–1 с максимумами при 543, 
580 (νs  Si–O–Si  + δ O–Si–O), 640 (νs  Si–O–Al), 
794 (νs Si–O–Si), 1068–1060 (νas (Si/Al)–O–(Si/Al)  
внутри материала) и 1220–1211 см–1 (νas (Si/Al)–
–O–(Si/Al) на  поверхности материала). Полосы 
с  максимумами поглощения 1220 и  1094  см–1, 
соответствующие внутренним и  внешним асим-
метричным валентным колебаниям (Si/Al)–O–
(Si/Al) в  структуре цеолита ZSM-12/ПЭ, интен-
сивнее, что соответствует большему количеству 
атомов алюминия. Полосы поглощения 580 
и 545 см–1 свидетельствуют о наличии в материа
ле структур, образованных призмой с основания-
ми из 12-членных колец, что согласуется с рабо-
тами, опубликованными ранее [22, 23].
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Рис. 1. Дифрактограммы цеолитов (а) и изотермы их низкотемпературной адсорбции–десорбции азота (б).
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Химический сдвиг 54,8  м.д. в  спектрах ЯМР 
27Al (рис. 3а) характеризует наличие тетраэдриче-
ского алюминия в каждом цеолите [19]. Однако 

в спектре цеолита ZSM-12 присутствует еще хи-
мический сдвиг при 0 м.д., идентифицирующий 
внекаркасный алюминий [24].

Таблица 1. Элементный состав, текстурные характеристики и степень кристалличности синтезированных цео-
литов ZSM-12

Цеолит Si/Al Na, мас.% SBET, м2 г−1 VMICRO, см3 г−1 Степень кристалличности, %

ZSM-12 113 0,01 224 0,06 94

ZSM-12/ПЭ 102 0,01 270 0,1 98

1300 900 500
Волновое число, см−1

ZSM-12
ZSM-12/ПЭ

Рис. 2. ИК-спектры синтезированных цеолитов.
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Рис. 3. Спектры ЯМР 27Al (а) и 29Si (б) синтезированных цеолитов.
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В спектре ЯМР 29Si цеолита ZSM-12 (рис. 3б) 
возрастает интенсивность химических сдви-
гов  Q4 при  –112 и –118  м.д., соответствующих 
тетраэдрическому кремнию SiO4 [25], но умень-
шается интенсивность химического сдвига  Q3 
при  –109,5  м.д., что свидетельствует о  высо-
ком содержании алюминия в  структуре цеоли-
та ZSM-12/ПЭ, которое согласуется с  данными 
элементного анализа (табл. 1) и подтверждается 
наличием характеристических полос поглоще-
ния в ИК-спектрах (рис. 2).

Согласно микрофотографиям  РЭМ (рис.  4), 
кристаллиты обоих цеолитов имеют вытяну-
тую эллипсоидную форму. Присутствие пен-
таэритрита в  ходе синтеза ZSM-12/ПЭ не  вли-
яет на  морфологию получаемых кристаллитов, 
но  влияет на  однородность материала  — взаи-
модействие между молекулами темплата, пен-
таэритрита и  ионами алюминия и  кремния, 
приводящее к  формированию устойчивого 
комплекса. Кристаллиты цеолита ZSM-12 ха-
рактеризуют неоднородностью, обусловленной 

ZSM-12 ZSM-12/ПЭ

ZSM-12 ZSM-12/ПЭ

5 мкм 5 мкм

200 нм 200 нм

Рис. 4. Микрофотографии РЭМ (вверху) и ПЭМ (внизу) синтезированных цеолитов.
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наличием аморфной фазы SiO2. Согласно мик
рофотографиям  ПЭМ (рис.  4), микропористые 
структуры обоих цеолитов схожи между собой 
и образуют многослойную стопку нанослоев [26].

На  кривых ТПД–NH3 (рис.  5а, табл.  2) цео-
литов ZSM-12 и  ZSM-12/ПЭ присутствуют два 
хорошо разрешенных сигнала с  максимумами 
при 158 и 162°С, соответствующие слабым кис-
лотным центрам. Второй тип сигналов с макси-
мумами при 360 и 410°C характеризует наличие 
сильных кислотных центров в материалах. Кон-
центрация таких центров в цеолите ZSM-12/ПЭ 
выше, что может быть связано с меньшим моль-
ным отношением Si/Al в материале за счет влия
ния пентаэритрита на  образование комплекса 
с ионами алюминия.

Показано, что для обоих цеолитов (рис.  5б, 
табл.  3) пиридин адсорбируется как на  кис-

лотных центрах Брэнстеда (1545  см–1) [27], так 
и Льюиса (1455 см–1) [28]. В спектре ZSM-12/ПЭ  
полоса, соответствующая деформационным 
колебаниям пиридина на  кислотных центрах 
Брэнстеда, выражена сильнее и имеет высокую 
интенсивность, что характеризует высокое со-
держание алюминия в  структуре цеолита, что 
согласуется с  отсутствием внекаркасного алю-
миния (рис. 3а). 

Сравнительные испытания материалов  
ZSM-12 и ZSM-12/ПЭ в реакции  

кислотно-катализируемой ацетализации  
фурфурола с этиленгликолем

Синтезированный цеолит ZSM-12/ПЭ, наря-
ду с образцом сравнения (ZSM-12), был испытан 
в  качестве катализатора кислотно-катализируе-
мой ацетализации фурфурола с этиленгликолем 
(рис. 6).
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Рис. 5. Температурно-программируемая десорбция аммиака на образцах цеолитов (а) и ИК-спектры поглощенного 
пиридина (б), адсорбированного на синтезированных цеолитах ZSM-12.

Таблица 2. Количество слабых и сильных кислотных центров синтезированных цеолитов, рассчитанных соглас-
но температурно-программируемой десорбции аммиака

Цеолит

Слабые центры, наблюдаемые  
в интервале температур 100–300°С

Сильные центры, наблюдаемые  
в интервале температур 300–500°С Общее содержание, 

мкмоль‧г–1

Т, °С количество,  
мкмоль‧г–1 Т, °С количество,  

мкмоль‧г–1

ZSM-12 158 221 360 141 362

ZSM-12/ПЭ 162 302 410 267 569
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Реакции проводили в  диапазоне температур 
80–120°C без добавления растворителя. Резуль-
таты испытаний приведены в табл. 4. 

Условия проведения реакций: катализатор 
100 мг, фурфурол 0,5 мл (0,006 моль), этиленгли-
коль 3,4 мл (0,06 моль), время реакции 6 ч.

Следует отметить, что образцы (материалы), 
полученные в  данной работе, проявили мень-
шую каталитическую активность в  целевой ре-
акции, чем некоторые ранее описанные твердые 
кислотные катализаторы на  основе цеолитов, 
специально разработанные для проведения 
ацетализации фурфурола и  испытанные в  оп-
тимизированных условиях [29, 30]. Однако, со-
гласно проведенным нами сравнительным экс-
периментам, цеолит ZSM-12/ПЭ проявил более 
высокую активность в  исследуемой реакции, 
а также был активен в более широком диапазоне 
рабочих температур, что в первую очередь может 

быть связано с его более высокой кислотностью 
по сравнению с образцом сравнения — цеолитом 
ZSM-12. Кроме того, возможным фактором, объ-
ясняющим каталитическую активность ZSM-12/
ПЭ, могут быть и текстурные особенности мате-
риала, обеспечивающие бо́льшую доступность 
активных кислотных центров для реагирующих 
молекул. Характерно, что при температуре 120°C 
для реакций с обоими катализаторами выход це-
левого ацеталя был ниже, чем при 100°C, что мо-
жет быть следствием как наличия диффузионных 
ограничений, определяющих общую скорость 
превращения, так и  образования тяжелых по-
бочных продуктов из  фурфурола. Аналогичную 
тенденцию наблюдали ранее для реакции ацета-
лизации фурфурола с 1,3-пропандиолом, катали-
зируемой SAPO-34 [30]. 

На  основании полученных данных следует 
отметить, что подход к  модификации способа  
гидротермального синтеза цеолита ZSM-12 пу-
тем введения добавки пентаэритрита может 
представлять интерес для оптимизации кис-
лотных и  текстурных характеристик материала, 
а  также может быть применен для разработки 
новых твердокислотных и  бифункциональных 
катализаторов на  основе носителей, имеющих 
кислотные свойства.

ЗАКЛЮЧЕНИЕ

Модификация способа получения цеолита 
ZSM-12 гидротермальным методом путем введе-
ния пентаэритрита в качестве добавки приводит 
к  изменению ряда кислотных и  текстурных ха-
рактеристик с  сохранением структуры получае-

Таблица 3. Количество кислотных центров Льюиса и Брэнстеда синтезированных цеолитов, рассчитанных со-
гласно ИК-спектроскопии адсорбированного пиридина

Цеолит
Количество кислотных центров образца, мкмоль Py‧г–1

кислотные центры Брэнстеда кислотные центры Льюиса общее содержание

ZSM-12 80 15 95

ZSM-12/ПЭ 125 41 166

.

O +
HO OH

O
O O

O
H+, T

−H2O

Рис. 6. Кислотно-катализируемая ацетализация фурфурола с этиленгликолем.

Таблица 4. Ацетализация фурфурола с этиленгликолем 
в присутствии цеолитов ZSM-12 и ZSM-12/ПЭ

Катализатор T, °C Выход ацеталя, %

ZSM-12

80 7

100 21

120 15

ZSM-12/ПЭ

80 39

100 44

120 41
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мого материала. Показано, что цеолит ZSM-12/
ПЭ обладает более высокой общей кислотно-
стью, и, согласно данным электронной микро-
скопии, кристаллы этого материала имеют более 
сглаженную поверхность по сравнению с образ-
цом ZSM-12, полученным в  отсутствие пента
эритрита. Установлено, что каталитическая ак-
тивность ZSM-12/ПЭ превосходит активность 
ZSM-12 в  реакции кислотно-катализируемой 
ацетализации фурфурола с этиленгликолем. Та-
ким образом, предложенный способ гидротер-
мального синтеза с применением пентаэритрита 
в качестве добавки может иметь перспективы для 
синтеза цеолитов с оптимальной кислотностью, 
что востребовано при  разработке новых твер-
до-кислотных катализаторов, а  также ряда би-
функциональных катализаторов на  основе цео-
литов, содержащих активные кислотные центры.
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