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Диоксид титана — материал, обладающий ря-
дом ценных свойств, а именно химической и тер-
мической стабильностью, низкой токсичностью, 
дешевизной и  превосходными электронными 
и  оптическими свойствами, благодаря которым 
ученые интенсивно изучают его применение 
в  потенциальных приложениях, таких как фо-
тоэлектрические устройства, фоторазложение 
загрязняющих веществ, фотокаталитическое по-
лучение водорода из воды и гетерогенный ката-
лиз [1, 2]. Фотокатализ является экономически 
эффективным способом для очистки окружаю-
щей среды [3]. На  настоящий момент исследо-
вателями было опробовано большое количество 
полупроводниковых материалов, таких как ок-
сиды титана и цинка, сульфид кадмия и другие, 
для фотокаталитического применения вслед-
ствие их  универсальных оптических и  электро-
химических свойств [4]. К  сожалению, данные 
материалы слабо применимы при  использова-

нии видимого света. Однако их сочетание с вы-
сокодисперсными наночастицами благород-
ных металлов, такими как Au, Pd и Ru, которые  
вследствие образования нового уровня Ферми 
в  материале повышают эффективность разде-
ления и  переноса носителей заряда, способ-
но приводить к  улучшению фотокаталитиче-
ских свойств данных материалов [5–7]. Кроме 
того, Ru является эффективным катализатором 
окисления и  хорошо известен своим примене-
нием в  гетерогенном катализе [8]. В  недавних 
работах сообщается о  том, что наночастицы Ru 
на поверхности TiO2 приводят к увеличению ак-
тивности фотокатализаторов и  демонстрируют 
фотокаталитическую активность при облучении УФ-  
и  видимым светом в  реакциях разложения вод
ного раствора органического красителя (напри-
мер, метилового оранжевого), а также в реакции 
газофазного селективного окисления бензилово-
го спирта [9].
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Также каталитические свойства наночастиц 
Ru сильно зависят от  их  размера [10]. Частицы 
большего размера приводят к увеличению содер-
жания драгоценного металла в фотокатализаторе 
и, следовательно, к увеличению его себестоимо-
сти. Частицы металла меньшего размера имеют 
бо́льшую удельную поверхность и  большее ко-
личество активных центров, что обеспечивает 
их  более высокую активность. Однако для на-
норазмерных частиц присуща тенденция к агло-
мерации с последующей дезактивацией [10, 11]. 
Для достижения высокой массовой активности 
и устойчивости к агрегации частицы Ru должны 
быть хорошо распределены по подложке [12]. Та-
ким образом, минимизация содержания металла 
при  одновременном повышении фотокаталити-
ческой активности вкупе со стабильностью дан-
ных материалов имеет важное значение в фото-
катализе или гетерогенном катализе. 

Металлосилоксаны  — соединения, содержа-
щие в своей структуре связь M–O–Si (где М — 
атом металла). В широком аспекте исследование 
данного класса соединений началось с  40‑х  гг. 
20 в. и продолжается по сей день, что позволило 
освоить к настоящему моменту целый ряд подхо-
дов к их синтезу [13]. Возможности варьирования 
структуры и состава таких соединений определи-
ли потенциальные направления их применения, 
среди которых, благодаря наличию в  структуре 
координационно ненасыщенного атома метал-
ла, одним из  основных является катализ [14]. 
Получение мононатровых солей алкоксисила-
нов  — солей Реброва [15]  — определило новые 
возможности в  синтезе функциональных орга-
норастворимых органоалкоксиметаллосилокса-
нов. В таком виде они оказались эффективными 
сшивателями полидиметилсилоксановых каучу-
ков за счет гидролиза  [16], что обусловлено как 
раз каталитическим эффектом атома металла; 
при  этом структура таких соединений хорошо 
совмещается с  матрицами различной природы, 
сохраняя оксидную форму атомов металла и обе-
спечивая равномерное распределение по объему 
материала [17–20]. 

Анализ существующих публикаций показыва-
ет перспективность получения фотокатализато-
ров на основе допированного рутением диоксида 
титана. Основной способ получения фотоката-
лизаторов состава Ru/TiO2 — пропитка диоксида 
титана различного фазового состава и  морфо-
логии раствором трихлорида рутения с  после-
дующей сушкой и прокаливанием. Полученные 

подобным образом фотокатализаторы активны 
в различных реакциях как при УФ-воздействии, 
так и  в  видимом свете [21–24]. На  настоящий 
момент исследований по  получению допиро-
ванного рутением диоксида титана с  помощью 
рутенийсилоксанового олигомера и  исследова-
ний фотокаталитических свойств в  литературе 
не встречалось. В настоящей работе исследуется 
возможность использования рутенийсилоксана 
в качестве источника рутения для создания фо-
токатализаторов Ru/TiO2. 

Цель работы  — разработка метода синтеза 
и  получение допированных рутением фотока-
тализаторов на  основе нанокристаллического 
диоксида титана с  использованием рутенийси-
локсанового олигомера и исследование фотока-
талитических свойств данных материалов в  ре-
акции фоторазложения органического красителя 
фиолетового кристаллического. 

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В  качестве исходных соединений были ис-
пользованы TiOSO4∙xH2O∙yH2SO4 (ос.ч., Aldrich),  
хлорид рутения(III) (≥46,5 мас.%, ч., ОАО «Аурат»),  
тетраэтоксилан (ос.ч., ООО  «АО РЕАХИМ»), 
метилтриэтоксисилан (Aladdin, Китай), толу-
ол (ч.д.а., «Вектон), этанол, гидроксид натрия, 
фторид аммония (ос.ч., ООО  «АО РЕАХИМ») 
и  дистиллированная вода. Молярную массу  
TiOSO4∙xH2O∙yH2SO4 определяли методом гра-
виметрии путем медленного высушивания 
аликвот (3,00  мл) раствора сульфата титанила 
(~0,6 М) с последующим прокаливанием сухого 
остатка при  900°С. Тетраэтоксисилан и  метил-
триэтоксисилан перед использованием пере-
гоняли; толуол и  этанол перед использованием 
обезвоживали кипячением и перегонкой над ги-
дридом кальция, хранили над слоем молекуляр-
ных сит 3Å.

Получение нанокристаллического диоксида титана
Диоксид титана получали по  методике, опи-

санной в предыдущей работе [25]. Гидротермаль-
но-микроволновую обработку раствора сульфата 
титанила (0,3 М) в присутствии фторида аммония 
(1 М) проводили с использованием микроволно-
вой системы Berghof Speedwave Xpert при 200°С 
в течение 1 ч. Степень заполнения автоклава со-
ставляла 30%. Образовавшийся осадок отделяли 
центрифугированием, многократно промывали 
водой и высушивали в течение 12 ч. Выход про-
дукта составил 96%.
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Получение трис(метилдиэтоксисилокси)рутения 
Ru[OSi(Me)(OEt)2]3 (Ru(Me)3-0)

Все операции проводили в  атмосфере арго-
на. К  раствору метилтриэтоксисилана (2,69  г, 
0,015 моль) в 15 мл осушенного толуола загружа-
ли гидроксид натрия (0,60 г, 0,015 моль) и далее 
смесь перемешивали при комнатной температу-
ре до  полного растворения гидроксида натрия 
(40  мин). Полученный раствор метилдиэтокси-
силанолята натрия приливали к  суспензии хло-
рида рутения(III) (1,03 г, 0,005 моль) в 6 мл осу-
шенного этанола с  дополнительной промывкой 
реакционной колбы 6  мл осушенного толуола. 
Смесь перемешивали при  50°С в  течение 4  ч 
до  нейтральной среды. Раствор продукта (на-
сыщенного темно-коричневого цвета) отделя-
ли от  выделившегося осадка (хлорида натрия) 
центрифугированием (9000  об./мин, 30  мин, 
20°С). Далее раствор анализировали на предмет 
содержания сухого вещества, полученного в ко-
личестве 1,22  г в  виде нетекучей массы темно- 
коричневого цвета. Выход продукта составил 
45%. Продукт хранили и  использовали в  виде 
раствора в смеси толуол : этанол (3 : 1).

Получение Ru/TiO2

Смесь диоксида титана (0,5  г, 0,0063 моль) 
и  рассчитанное количество рутенийсилоксано-
вого олигомера (0,1, 0,5 и 1,0 мас.% в пересчете 
на  Ru) в  растворе этанола (10  мл) выдерживали 
в автоклаве при 80°С в течение 24 ч при переме-
шивании. Полученный продукт центрифугиро-
вали (18 000 об./мин, 5 мин, 25°С) и высушивали 
для удаления растворителей (25°С), затем гидро-
лизовали в воде в течение 12 ч при 40°С и снова 
высушивали (50°С), после чего восстанавливали 
в трубчатой печи в атмосфере водорода (скорость 
нагрева 2°С/мин до  400°С). Получали продукт 
массой 0,486 г в виде темно-коричневого‑черного 
порошка. 

Образец 0,5% Ru UV100 был получен анало-
гично.

Получение Ru(Cl)TiO2

Образец сравнения из хлорида рутения полу-
чали пропиткой диоксида титана по влагоемко-
сти из раствора в метаноле с последующими ана-
логичными процедурами.

Рентгенофазовый анализ (РФА) образцов про-
водили на дифрактометре Bruker D8 Advance (Гер-
мания) с CuKa-излучением в диапазоне 2q 10°–80° 
с шагом 0,02° и выдержкой не менее 0,5 с на шаг.

Исследование морфологии полученных ката-
лизаторов осуществляли методом сканирующей 
электронной микроскопии (СЭМ) с  исполь-
зованием электронного микроскопа Carl Zeiss 
NVision 40, оснащенном анализатором X-Max 
Oxford Instruments (80  мм2), и  просвечивающей 
электронной микроскопии (ПЭМ) на  приборе 
JEOL JEM-2100 (Япония) с ускоряющим напря-
жением 200 кВ.

Площадь удельной поверхности образцов 
определяли методом низкотемпературной ад- 
сорбции азота с  использованием прибора 
ASAP  2020 (Micromeritics). Перед анализом об-
разцы вакуумировали 2  ч при  250°С. Удельная 
поверхность рассчитана по БЭТ при относитель-
ном парциальном давлении Р/Р0 = 0,2.

Рентгеновскую фотоэлектронную спектро-
скопию (РФЭС) образцов проводили на  спек-
трометре PREVAC EA15 (PREVAC sp.  z o.  o., 
Польша), оснащенном полусферическим анали-
затором высокого разрешения. В качестве источ-
ника излучения был выбран AlKα (hν = 1486,6 эВ,  
150 Вт). Давление остаточных газов в ходе изме-
рения не превышало 5 × 10−9 мбар. Эффект заряд-
ки учитывали, используя в качестве внутреннего 
стандарта положение линии C1s (Есв = 284,8 эВ) 
атомов углерода.

Для определения фотокаталитической ак-
тивности (ФКА) полученных образцов диокси-
да титана была использована модельная реак-
ция фотодеградации органического красителя 
кристаллического фиолетового в  водной среде 
по  стандартной методике [25, 26] с  использова-
нием спектрофотометра Ocean Optics QE65000 
(США) и  дейтерий-галогеновой лампы Ocean 
Optics HPX-2000. Также с  помощью данного 
спектрофотометра были получены спектры диф-
фузного отражения образцов.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Диоксид титана, полученный в  результате  
гидротермально-микроволновой обработки рас-
твора сульфата титанила, представляет собой 
однофазный нанокристаллический анатаз с раз-
мером частиц ~9 нм, посчитанным по формуле 
Шеррера, о чем свидетельствует дифрактограм-
ма, приведенная на  рис.  1 без примесей других 
кристаллических модификаций.
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Рутенийсилоксан Ru(Me)3-0 получали по  из-
вестной методике для получения металлосилок-
санов посредством взаимодействия RuCl3 с  ме-
тилдиэтоксисланолятом натрия (рис. 2) [16]. 

Спектр 1Н ЯМР продукта содержит занижен-
ное количество сигналов протонов этокси-групп 
относительно теоретических значений пример-
но на треть (рис. 3), что может быть связано как 
с  формированием после получения частично 
гидролизованной олигомерной формы продук-
та, так и со специфическим влиянием атома ме-
талла, проявляющимся при снятии спектра, что 
характерно для большинства ранее полученных 
органоалкоксиметаллосилоксанов. Соединение 
Ru(Me)3-0 хранили и  использовали в  виде раз-
бавленного раствора в  смеси толуол  :  этанол  = 
= 3  : 1 (v/v), т.к. опытным путем было установ-
лено, что соединение имеет тенденцию к выпа-

дению из толуола, что может в перспективе регу-
лироваться варьированием органической группы 
при атоме кремния. Такое соединение способно 
как легко гидролизоваться (в  т.ч. термически) 
в  присутствии влаги воздуха с  формированием 
собственной сшитой трехмерной сетки состава 
[CH3SiO1,5RuO1,5][OH]x, так и  взаимодейство-
вать с  субстратом, содержащим на  поверхно-
сти гидроксильные группы (рис. 4). Ранее было 
показано, что при  термической сшивке (вплоть 
до 200°С) формируемая сетка содержит лишь ок-
сидную форму металла [16], что фактически изо-
лирует каждый атом металла друг относительно 
друга. 

На  рис.  5 приведены спектры поглощения 
рутенийсилоксанового олигомера, диоксида ти-
тана, полученного гидротермально-микроволно-
вой обработкой из  раствора сульфата титанила, 
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1,0

0,8

0,6

0,4

0,2

0

300 350 400 450
Длина волны, нм

П
ог

ло
щ

ен
ие

, о
тн

. е
д.

500 550 600

1,5 2,0 2,5 3,0

TiO2

Ru олигомер
TiO2 + Ru олигомер

hv, эВ

(F
(R

∞
)h

v)
1/

2

3,5 4,0

Рис. 5. Спектры поглощения и перестроенные спектры в координатах Тауца исходного диоксида титана, рутенийси-
локсанового олигомера и их продукта взаимодействия.



49ПОЛУЧЕНИЕ И ФОТОКАТАЛИТИЧЕСКИЕ СВОЙСТВА…

НЕФТЕХИМИЯ   том 65   № 1   2025

а  также продукта их  взаимодействия до  стадии 
гидролиза. По  данным рисунка можно заклю-
чить, что взаимодействие олигомера с  диокси-
дом титана приводит к  смещению края полосы 
поглощения в видимую область. 

На рис. 1 приведены дифрактограммы исход-
ного диоксида титана и рутениевых фотокатали-
заторов, полученных из  рутенийсилоксанового 
олигомера и хлорида рутения, на которых не на-
блюдается рефлексов металлического Ru или 
RuO2. Однако для образца сравнения 0,5% Ru(Cl)
TiO2, полученного из  хлорида рутения, размер 
кристаллитов вырос до 12 нм. По данным низко-
температурной адсорбции азота, площадь удель-
ной поверхности образцов возрастает с  ростом 
концентрации рутения в  образцах, что также 
связано с ростом концентрации кремния в них. 
Данный эффект наблюдался и для образца, полу-
ченного допированием рутением коммерческо-
го диоксида титана Hombikat UV100. Площадь 
удельной поверхности для образца 0,5% Ru(Cl) 
TiO2 уменьшилась, что можно объяснить увели-
чением размеров наночастиц (табл. 1). 

На рис. 6а–в показаны изображения растровой 
электронной микроскопии фотокатализаторов, 
полученных из  рутенийсилоксанового олигоме-
ра. Ни  в  изображениях вторичных электронов, 
ни в изображениях обратно отраженных электро-
нов не видны крупные частицы рутения, что может 
говорить об их малом размере. По данным рентге-
носпектрального микроанализа, содержание руте-
ния по массе составляет от 0,09 до 0,92% (табл. 1). 

По  данным рентгеновской фотоэлектронной 
спектроскопии, на  поверхности катализато-
ров 0,5% Ru/TiO2 и  0,5% Ru(Cl)TiO2 находятся 
атомы C, O, Ti, Ru и Si (18,9; 54,97; 16,82; 0,26;  
9,05 ат.%) и  C, O, Ti, Ru и  Cl (24,9; 53,1; 21,34; 
0,15; 0,51 ат.%) соответственно. Более высокое 
содержание рутения на поверхности образца, по-
лученного из рутенийсилоксанового олигомера, 
может означать лучшее распределение рутения 
на поверхности диоксида титана вследствие ста-
билизации атомов рутения сеткой из олигомера. 
Деконволюция спектров C1s и Ru3d, O1s, а также  
спектры Si2p и Cl2p приведены на рис. 7. После 
восстановления образцов энергия связи рутения 
(281,2 и 281,2 эВ) соответствует элементу в Ruδ+ 
состоянии, что согласуется литературными дан-
ными [27]. Для спектра кислорода наблюдаются 
отличия, так как  для образца (сплошные линии –  
ТГ кривые, пунктирные линии – ДТГ кривые). 
0,5% Ru(Cl)TiO2 (рис. 7в) кислород находится в 
трех формах: О2-(О-Тi), -OH и Н2Оадс; для образ-
ца 0,5% RuTiO2, помимо этих состояний, харак-
терно также состояние О2- (О-Si). 

Так, по данным ПЭМ (рис. 8) на микрофото-
графиях 0,5% RuTiO2-фотокатализатора, не  на-
блюдались агломераты наночастиц рутения, так 
как частицы TiO2 и  рутения связаны между со-
бой –Si‑O‑ сеткой, что согласуется с  данными 
рентгеновской фотоэлектронной спектроско-
пии, где концентрация рутения на  поверхности 
выше, чем для образца, полученного из  хлори-
да рутения. С  помощью рентгеноспектрального  
микроанализа удалось зафиксировать присут-

Таблица 1. Свойства полученных образцов диоксида титана

SБЭТ, м2/г Содержание Ru, 
мас.%

Фотокаталитическая активность (ФКА),  
%/мин

УФ видимый

Hombikat UV100 310 – 0,46 0,04

TiO2 225 – 0,49 0,04

0,1% Ru/TiO2 264 0,09 ± 0,04 0,59 0,16

0,5% Ru/TiO2 305 0,47 ± 0,05 0,70 0,27

1,0% Ru/TiO2 321 0,92 ± 0,06 0,64 0,24

0,5% Ru(Cl)TiO2 184 0,48 ± 0,04 0,62 0,23

0,5% Ru Hombi кат. UV100 328 0,42 ± 0,06 0,65 0,25
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Рис. 6. РЭМ-изображения образцов: (а) 0,1% Ru/TiO2, (б) 0,5% Ru/TiO2, (в) 1,0% Ru/TiO2.
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ствие рутения в катализаторах, а также кремния 
для образца 0,5% Ru/TiO2 и  хлора для образца 
0,5% Ru(Cl)TiO2.

Образцы модифицированного диоксида ти-
тана, а  также коммерческий образец сравнения 
(Hombikat UV100) были исследованы в  реак-
ции разложения кристаллического фиолетового 
при облучении УФ- и видимым светом (табл. 1). 
Можно утверждать, что допирование диоксида 
титана рутением приводит к  увеличению ФКА 
нанокристаллического диоксида титана (рис.  9) 

в УФ, а также появляется ФКА в видимом свете, 
которая отсутствует у  исходного наноразмерно-
го диоксида титана, полученного гидротермаль-
но-микроволновой обработкой, и коммерческо-
го образца диоксида титана Hombikat UV100. 
Образцы, полученные с  рутенийсилоксановым 
олигомером, показали бо́льшую фотокатали-
тическую активность по  сравнению с  образцом 
из хлорида рутения(III), что можно связать с боль-
шей площадью удельной поверхности, а  также 
более высокой дисперсностью рутения на  по-
верхности фотокатализатора. Сравнивая  ФКА 

(a)

50 нм50 нм

(б)

Рис. 8. Изображения ПЭМ: (а) образец 0,5% Ru/TiO2, (б) образец 0,5% Ru(Cl)TiO2.
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образцов UV100 и 0,5% RuUV100, можно заклю-
чить, что данный способ модифицирования ди-
оксида титана в достаточной степени универса-
лен, так как образец 0,5% RuUV100 имеет более 
высокую ФКА по сравнению с недопированным 
образцом.

ЗАКЛЮЧЕНИЕ

В ходе работы была разработана методика по-
лучения допированного рутением диоксида тита-
на с помощью рутенийсилоксанового олигомера, 
по которой впервые были получены фотокатали-
заторы на основе нанокристаллического диокси-
да титана, исследованы их  физико-химические 
и  фотокаталитические свойства. Установлено, 
что большей фотокаталитической активностью 
в  реакции УФ-разложения красителя кристал-
лического фиолетового обладает образец 0,5% 
Ru/TiO2, содержащий по  массе 0,47% рутения. 
Деградация красителя кристаллического фиоле-
тового составляет 92% при УФ-воздействии в те-
чение 2 ч для данного образца. 
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