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Нефтяная промышленность является клю-
чевым сектором в  быстро развивающемся со-
временном мире, обеспечивая энергетическую 
основу для промышленного роста, транспорта 
и  технологий, а  также сырье для химической 
и  производственной отраслей [1]. Развитие 
данной отрасли промышленности требует по-
стоянного совершенствования методов разде-
ления и  очистки задействованных в  процессе 
жидкостей и  продуктов переработки. Одним 
из  направлений развития и  повышения эф-
фективности процесса является использо-
вание баромембранного разделения [2–4]. 
В баромембранных процессах разделение про-
исходит при прохождении через мембраны под 
действием приложенного трансмембранного 

давления. Такие процессы позволяют в непре-
рывном режиме в  относительно мягких усло-
виях разделять жидкие системы с  меньшими 
энергозатратами по  сравнению с  традицион-
ными методами деасфальтизации  [5]. В  связи 
с этим внимание многих ученых сосредоточено 
на  исследованиях применения баромембран-
ных процессов для разделения нефти [6–15]  
и нефтепродуктов [16–22].

При  использовании полимерных мембран 
для фильтрации органических жидкостей возни-
кают трудности с подбором полимера. По срав-
нению с  другими мембранными материалами, 
такими как поли(винилиденфторид), полисуль-
фон и поли(эфирсульфон), мембраны на основе 
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полиакрилонитрила (ПАН) обладают высокой 
устойчивостью к  органическим растворителям, 
хорошими механическими и  пленкообразую-
щими свойствами. Также  ПАН является более 
гидрофильным материалом по сравнению с дру-
гими распространенными материалами и, как 
следствие, меньше подвержен засорению ор-
ганическими веществами. Это делает мембра-
ны из  ПАН перспективными для многих задач 
ультрафильтрационного разделения нефтяных  
сред [5, 13–14, 22–24].

Для получения мембран из ПАН используют 
апротонные растворители  — диметилсульфок-
сид (ДМСО), N,N-диметилформамид (ДМФ), 
N,N-диметилацетамид (ДМА) и N-метилпирро-
лидон (НМП) [25]. Анализ параметров раство-
римости Хансена, проведенный в  работе [26], 
показал, что ДМСО и НМП являются лучшими 
растворителями для ПАН по сравнению с ДМФ 
и ДМА.

Основной метод получения мембран 
из ПАН — инверсия фаз, индуцированная жид-
ким осадителем NIPS (nonsolvent-induced phase 
separation) [14, 26], которая позволяет сформиро-
вать асимметричную пористую структуру, соче-
тающую в себе высокую проницаемость с узки-
ми порами на  поверхности мембраны. Данный 
метод заключается в  погружении пленки поли-
мерного раствора в  осадитель (обычно в  воду). 
Взаимная диффузия растворителя и  осадителя 
приводит к нестабильности полимерного раство-
ра, его распаду на  обогащенную и  обедненную 
полимером фазу и  в  итоге  — к  формированию 
пористой структуры. Однако в случае ПАН есть 
ограничение, связанное с  тем, что при  форми-
ровании из данного материала мембран методом 
инверсии фаз без дополнительных модификаций 
не  получается уменьшить величину молекуляр-
ной массы отсечения (Molecular weight cut-off, 
MWCO) ниже 5000–8000 г/моль [28]. 

Для того чтобы повысить величину задержи-
вания асфальтенов из  нефти, в  рамках данной 
работы были проведены исследования по умень-
шению размера пор путем добавления в формо-
вочный раствор мягкого осадителя — этилацета-
та. В работах [26, 28–30] было показано, что для 
уменьшения размера пор мембран в  формовоч-
ный раствор добавляют летучие растворители, 
такие как ацетон, 1,4-диоксан или тетрагидро-
фуран (ТГФ). Считается, что процесс частич-
ного испарения летучего сорастворителя перед 

этапом осаждения погружением в коагуляцион-
ную ванну необходим для формирования верхне-
го слоя. MWCO и средний размер пор мембран 
уменьшаются с увеличением времени испарения 
растворителя [26]. Можно предположить, что 
испарение летучего сорастворителя приводит 
к увеличению концентрации полимера и, следо-
вательно, к уменьшению размера пор и пористо-
сти [31].

С  другой стороны, в  работах [27, 30] было 
показано, что при  формировании ПАН-мем-
бран с  добавлением ацетона в  формовочный 
раствор его присутствие в  момент погружения 
в  осадитель оказывает более существенный эф-
фект на  размер пор, чем испарение до  стадии 
погружения в  осадитель. Показано, что добав-
ление ацетона в  формовочные растворы  ПАН 
с  ДМСО или  НМП приводит к  снижению вяз-
кости раствора в 2–3 раза, что позволяет снизить 
величину MWCO с  58  000 до  1800  г/моль [28]. 
Плоские ПАН-мембраны с  величиной MWCO  
1800  г/моль, полученные из формовочного рас-
твора с  добавлением ацетона методом NIPS, 
были исследованы в процессе ультрафильтраци-
онного разделения нефти [13]. Мембраны проде-
монстрировали величину задерживания асфаль-
тенов до  95%, а  также высокую устойчивость 
к засорению. 

Следует также отметить, что при получении 
ПАН-мембран для улучшения свойств в формо-
вочный раствор часто добавляют либо водорас-
творимые полимеры или олигомеры, такие как 
поливинилпирролидон или полиэтиленгли
коль  [32–33], либо неорганические соединения, 
прежде всего соли [34]. С другой стороны, в науч-
ной литературе практически отсутствуют исследо-
вания по получению мембран из ПАН при добавле-
нии в  формовочный раствор низкомолекулярных 
органических жидкостей, являющихся мягкими 
осадителями по отношению к полимеру. 

Одним из таких возможных соединений явля-
ется этилацетат, который широко используется 
как растворитель, из-за низкой стоимости и ма-
лой токсичности. По  отношению к  ПАН этил
ацетат является мягким осадителем, что роднит 
его с ацетоном и другими используемыми добав-
ками. В данной работе было исследовано воздей-
ствие добавления этилацетата в  формовочный 
раствор при приготовлении ПАН-мембран мето-
дом NIPS на размер пор и эффективность выде-
ления асфальтенов из нефти. 
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ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для получения мембран использовали ком-
мерческий сополимер поли(акрилонитрил-со- 
метилакрилат) с соотношением мономеров 92 : 8, 
приобретенный у  компании ПО  «Оргстекло» 
ВНИИСВ (Россия). Средневесовая молекулярная 
масса сополимера Mw составляет 107000 г/моль.  
Для приготовления формовочного раствора 
в  стеклянную колбу объемом 100  мл наливали 
рассчитанное количество одного из растворите-
лей, ДМСО (х.ч., «Химмед», Россия) или  НМП 
(х.ч., «Химмед», Россия), и  этилацетата в  каче-
стве сорастворителя (х.ч., ООО  «Компонент», 
Россия), после чего перемешивали в  течение 
30  мин на  магнитной мешалке  IKA C-MAG 
HS  10 (Германия). Далее в  раствор добавляли 
рассчитанное количество полимера [12]. Были 
приготовлены 16 формовочных растворов:  
12 мас.% ПАН в  НМП/этилацетат и  12 мас.% 
ПАН в  ДМСО/этилацетат с  соотношением 
растворителей 90/10 и  от  10 до  16 мас.% ПАН 
в ДМСО или НМП без летучего сорастворителя. 
На  рис.  1 представлена блок-схема приготовле-
ния мембран методом инверсии фаз индуциро-
ванной жидким осадителем (NIPS) [5, 13–14, 22]. 
Пленку полимерного раствора наносили слоем 
толщиной 200 мкм на полированное стекло, по-
сле чего погружали в осадитель. В качестве оса-
дителя в работе использовали дистиллированную 
воду. Сформированную мембрану по  24  ч по-
следовательно отмывали водой, затем этанолом 
и гексаном. Далее мембрану сушили в вытяжном 
шкафу при комнатной температуре.

Размер пор в  мембранах определяли на  при-
боре POROLIQ  1000 ML. Принцип действия 
прибора основан на  вытеснении смачивающей 
жидкости несмачивающей. Методика определе-
ния размера пор мембраны методом жидкостной 
порометрии детально описана в работе [14]. Ос-
новные параметры, используемые в данной рабо-
те, — средний размер пор по потоку MFP (Mean 
Flow Pore Size) и размер наибольшей поры. 

Исследование фильтрационных свойств про-
водили в тупиковом режиме. Активная площадь 
мембраны составляла 7,9  см2. Объем жидкости, 
заливаемой в  ячейку, для всех экспериментов 
составлял 900  мл. Трансмембранное давление 
в процессе фильтрации поддерживалось на уров-
не  3 атм. Все полученные мембраны были оха-
рактеризованы с  точки зрения проницаемости 
по воде, толуолу, нефти и растворам нефти в то-
луоле. Фильтрацию воды и  толуола проводили 
до  тех пор, пока поток не  достигал стабильных 
по времени значений (30–60 мин). Фильтрацию 
нефти и  растворов нефти проводили на  образ-
цах после фильтрации толуола, в  то  время как 
для фильтрации воды использовались отдель-
ные образцы, вырезанные из той же мембраны. 
Для образцов, предназначенных для фильтра-
ции нефти, предварительно измеряли проницае-
мость по чистому толуолу, после чего остатки то-
луола сливали и заливали разделяемую жидкость 
(нефть или раствор нефти). 

После сбора необходимого объема пермеа-
та (100  мл) остаток жидкости из  ячейки слива-

Стекло

Осадительная ванна

ДМСО
Сополимер

Этилацетат

Отмывочная ваннаМембрана

Отливка из
формовочного

раствора

Приготовление
формовочного

раствора

Рис. 1. Блок-схема приготовления мембран методом инверсии фаз, индуцированной жидким осадителем.
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ли, а ячейку три раза промывали 50 мл толуола, 
после чего повторно заливали 900  мл толуола 
и повторно измеряли проницаемость мембраны. 
Процесс фильтрации растворов нефти проводи-
ли в течение 3–5 ч, процесс фильтрации нефти — 
в течение 8–11 ч.

Проницаемость мембраны рассчитывали 
по формуле

P
m

S t p
=

× ×∆ ∆
,

                         (1)

где m — масса пермеата, прошедшего через мем-
брану площадью S в течение времени ∆t, а ∆p — 
трансмембранное давление.

Задерживающую способность мембран в слу-
чае растворов нефти в толуоле определяли по ме-
тодике, подробно расписанной в  работе [13]. 
В  работе использовали нефть Олимпийского 
месторождения Оренбургской области, которая, 
по  данным Росгеолфонда [35], содержит 7,3% 
смол и  4,35% асфальтенов. Оптическую плот-
ность (А) измеряли с помощью спектрофотоме-
тра ПЭ-5400УФ. Для расчета задерживающей 
способности использовали значения оптиче-
ской плотности растворов до и после мембраны 
на  длине волны 365  нм в  случае исходной кон-
центрации нефти 1 г/л, 490 нм в случае исходной 
концентрации нефти 10 г/л, и 900 нм для раство-
ров с  исходной концентрацией нефти 100  г/л. 
В  случае фильтрации нефти пробы разбавляли 
толуолом, как описано в работе [13].

Задерживающую способность мембраны  (R) 
определяли исходя из  оптической плотности 
жидкости в ячейке (Аf) и пермеате (Аp) [5, 32]:

R
A

A
p

f
= −







×1 100%.                       (2)

Для оценки состава фракций нефти в  пер-
меате, ретентате и исходной смеси был исполь-
зован метод газовой хроматографии  (ГХ). По-
скольку исходные растворы нефти разбавляли 
толуолом перед фильтрацией, дополнительная 
подготовка образцов для анализа не  требова-
лась. Для хроматографического эксперимента 
использовали газовый хроматограф Shimadzu 
GC-2010 (Япония) с ПИД (пламенно-ионизаци-
онный детектор). Разделение проводили на  ко-
лонке SP-Sil 5 CB (100% полидиметилсилоксан), 

30  м  ×  0,32  мм  ×  0,25  мкм, в  режиме темпе-
ратурного программирования 50°C (2  мин)  —  
4°C/мин  — 310°C с  использованием гелия выс-
шего сорта в качестве газа-носителя, с входным 
давлением 200 кПа и соотношением разделения 
1 : 100. Для обработки полученных хроматограмм 
использовали программное обеспечение  GC 
Solution (Япония).

Наряду с фильтрационными характеристика-
ми в работе оценивали засорение мембран. Ис-
пользовали следующие связанные между собой 
параметры [5, 13–15, 22, 35]: коэффициент обще-
го загрязнения (Total fouling ratio, TFR), коэффи-
циент восстановления потока (Flux recovery ratio, 
FRR) и степень очистки (ηС). Данные параметры 
рассчитывали следующим образом [36, 37]:

TFR =
−





×
J J

J
S1

1
100%,                 (3)

FRR = ×
J
J

2

1
100%,                      (4)

ηC
s

s

J J

J J
=

−( )
−

×2

1
100

( )
%.                   (5)

Структуру и морфологию мембран определя-
ли с  использованием сканирующей электрон-
ной микроскопии (CЭМ), которую проводи-
ли на  установке Thermo Fisher Phenom  XL G2 
Desktop  SEM (США). Для получения сколов 
мембран их  предварительно пропитывали изо-
пропанолом, а  затем разламывали в  среде жид-
кого азота. Ускоряющее напряжение при съемке 
микрофотографий составляло 15 кэВ. 

Состав слоя осадка на поверхности мембраны 
после фильтрации был дополнительно иссле-
дован с  помощью ИК-спектроскопии в  режиме 
нарушенного полного внутреннего отражения 
(НПВО). Для сравнения спектров их нормирова-
ли по полосе нитрильной группы 2243 см–1, так 
как C≡N-группа не должна претерпевать измене-
ний в процессе фильтрации [22]. 

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В  работе были получены мембраны из  фор-
мовочных растворов различного состава. Со-
держание сополимера варьировали в  диапазоне 
10–16 мас.% с шагом 1 мас.% в ДМСО и НМП 
без добавления сорастворителя. Получение 
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мембран из  формовочных растворов с  большей 
концентрацией полимера затруднительно ввиду 
их высоких вязкостей. Как показано на рис. 2а, 
увеличение концентрации сополимера  ПАН 
приводило к увеличению вязкости от 17,8 ± 0,9 
до  199,6  ±  8,1 Па  с  для растворов с  НМП 
и от 18,3 ± 1,1 до 256,5 ± 10,2 Па с для растворов 
с  ДМСО. Согласно данным жидкостной поро-
метрии, средний размер пор полученных мем-
бран (MFP) из  данных формовочных растворов 
уменьшался с увеличением концентрации сопо-
лимера (рис.  2б): для мембран  ПАН в  НМП  — 
с 52,4 ± 2,6 по 16,9 ± 0,8 нм, для мембран ПАН 
в ДМСО — с 37,9 ± 1,9 по 14,8 ± 0,6 нм.

В  работе были получены мембраны из  фор-
мовочных растворов состава ПАН/НМП/этил
ацетат (М-01) и ПАН/ДМСО/этилацетат (М-02) 
с  соотношением компонентов 12/79,2/8,8. До-
бавление этилацетата в  формовочный раствор 
снизило его вязкость в 1,5–2 раза: с 53,1 до 35,5 Па  
с  в  случае НМП и  с  57,1 до  28,6 Па  с  в  случае 
ДМСО. Это позволило создать мембраны с мень-
шим размером пор, чем у мембран, полученных 
без сорастворителя (табл.  1): мембрана из  рас-
твора с  НМП (М-01)  — 9,6  ±  0,5  нм, мембрана 

из  раствора с  ДМСО (М-02)  — 19,2  ±  0,6  нм. 
При фильтрации толуола установлено, что про-
ницаемость мембран по толуолу была ниже, чем 
проницаемость по  воде (табл.  1), хотя вязкость 
толуола ниже. Проницаемость по  воде и  толуо-
лу мембраны М-01 выше, чем у мембраны М-02, 
что не  коррелируется со  средним размером пор 
данных мембран, однако данный результат хоро-
шо согласуется с результатами работ [28, 30], где 
такое поведение связывается с тем, что при ис-
пользовании НМП в качестве растворителя фор-
мируется более открытая пористость по сравне-
нию с ДМСО. 

Анализ СЭМ-изображений бокового скола 
показал, что мембраны имели асимметричную 
структуру с большим количеством пальцевидных 
макропустот и плотным селективным слоем на по-
верхности (рис.  3а, г). Толщина плотного слоя 
на поверхности мембран составила 7,14 ± 2,21 мкм 
для мембраны М-01 и  13,51  ±  3,05  мкм в  случае 
мембраны М-02. СЭМ-изображения поверхно-
сти показали отсутствие существенных дефектов; 
при  этом размер пор мембран был существенно 
ниже разрешающей способности используемого 
метода (рис. 3б, д).
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Рис. 2. Зависимость вязкости формовочных растворов (а) и среднего размера пор, полученных мембран (б) от концен-
трации сополимера в растворе.

Таблица 1. Характеристики мембран, полученных с добавлением этилацетата

Мембрана
Формовочный 

раствор
Вязкость, Па·с

Диаметр пор, нм Проницаемость, кг/(м2·ч·атм)

MFP dmax вода толуол

М-01 ПАН/НМП/этилацетат 35,5 ± 2,1 9,6 ± 0,5 29 ± 3 135,6 ± 10,7 26,3 ± 3,5

М-02 ПАН/ДМСО/этилацетат 28,6 ± 1,3 19,2 ± 0,6 41 ± 9 53,2 ± 4,3 22,1 ± 2,2
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Эффективность разделительных характеристик 
мембран оценивали путем фильтрации раство-
ров нефти в  толуоле разной концентрации (1, 10 
и 100 г/л) и неразбавленной нефти (табл. 2). Уве-
личение содержания нефти в растворе приводило 
к росту задерживающей способности при меньшей 
проницаемости, что является следствием увеличе-
ния размера частиц асфальтенов с  увеличением 
их  концентрации. Данный результат согласуется 
с предыдущими работами, где также наблюдалось 
увеличение задерживающей способности с увели-
чением содержания асфальтенов [13–14]. 

При фильтрации нефти и растворов с содер-
жанием нефти 10 и 100 г/л в толуоле проницае-
мость мембраны М-01 была в 1,9–3,25 раза выше 
по  сравнению с  мембраной М-02. Задерживаю-
щая способность по асфальтенам обеих мембран 
при  фильтрации нефти и  раствора 100  г/л неф-
ти в  толуоле выше 95%. Пермеат, полученный 
при  фильтрации неразбавленной нефти, был 
существенно светлее по  сравнению с  исходной 
смесью (рис. 4). При этом пермеат, полученный 
при  фильтрации нефти на  мембране М-01, за-

метно светлее, чем пермеат на  мембране М-02; 
это указывает на  то, что мембрана М-01 пред-
положительно способна задерживать не  только 
асфальтены, но и смолы. На рис. 4в показан при-
мер графика зависимости оптической плотности 
раствора нефти в толуоле от общего содержания 
смол и  асфальтенов при  λ  =  900  нм, косвенно 
подтверждающий это предположение. Построе-
ние градуировочной характеристики проводили 
путем последовательного разведения исходно-
го образца нефти, содержавшего 7,3 мас.% смол 
и 4,35 мас.% асфальтенов.

Результаты из  табл.  1 и  2 демонстрируют, 
что НМП позволяет получать мембраны с мень-
шим размером пор и  более высокой проницае-
мостью. Это согласуется с  результатами, полу-
ченными в  работах [28, 30] с  использованием 
гомополимера ПАН. Такое поведение может 
быть объяснено более высокой связностью пор 
в мембране, полученной из НМП. 

Для всех мембран с  увеличением содержания 
нефти в  фильтруемом растворе поток пермеата 

50 мкм

50 мкм

50 мкм

50 мкм

(а) (б)

(в) (г)

Рис. 3. СЭМ-изображения: бокового скола (а) и (в), поверхности (б) и (г) мембраны М-01 и М-02 соответственно.

Таблица 2. Характеристики мембран в процессе разделения нефти и растворов нефти в толуоле

Мембрана
Проницаемость, кг/(м2 ч атм) Задерживание асфальтенов, %

1 г/л 10 г/л 100 г/л нефть 1 г/л 10 г/л 100 г/л нефть

М-01 21,0 ± 0,2 8,8 ± 1,4 0,9 ± 0,2 0,013 ± 0,002 18 ± 1 27 ± 2 98 ± 4 99,7 ± 0,2

М-02 20,9 ± 0,4 4,7 ± 0,6 0,3 ± 0,1 0,004 ± 0,001 8 ± 1 36 ± 2 98 ± 5 99,7 ± 0,1
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уменьшался, что отражается в увеличении параме-
тра TFR (рис. 5а). При фильтрации нефти общее 
засорение обеих мембран составляло более 99,9%. 
Однако после промывки толуолом мембрана М-01 
восстанавливала 35% от  исходной проницаемо-
сти (параметр  FRR), а  в  случае М-02  — только 
13% от  исходной проницаемости, что указывает 
на бо́льшую устойчивость к засорению мембраны 

М-01 (рис.  5б). Дополнительно была определена 
степень очистки (ηC) исследуемых мембран в про-
цессе фильтрации разделяемых смесей (рис.  5в). 
Мембрана M-01 демонстрировала более высокие 
значения ηC при фильтрации раствора 100 г/л неф-
ти в толуоле и неразбавленной нефти. Это указы-
вает на  более низкую адсорбцию загрязняющих 
веществ нефти на поверхности мембраны М-01.
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Образующийся на  поверхности мембран слой 
осадка был исследован методом ИК-НПВО. Были 
исследованы поверхности мембраны до  и  после 
фильтрации раствора 100  г/л нефти в  толуоле. 
На  рис.  6 показан ИК-спектр мембраны М-02. 
На  нем присутствуют все полосы, характеризу-
ющие сополимер поли(акрилонитрил-со-метил
акрилат): валентные колебания  СН проявляются 
в области 2940–2850 см–1, полоса при 2243 см–1 ха-
рактеризует группу C≡N, деформационные С–Н 
при  ~1453 и  1371  см–1, смешанные С–Н и  маят-
никовые CH2 в  области  1040–1080  см–1 и  слабые 
полосы поглощения при 1236 и 773 см–1, валент-
ные колебания С=О при 1738 см–1, смешанные ва-
лентные С–О и деформационные от С=О и С–О 
в  области  1250–1000  см–1 характеризуют метил- 
акрилатную группу [21, 38]. Полоса в области 1670–
1630 см−1 предположительно вызвана асимметрич-
ной растягивающей вибрацией –COO-групп [22].

При  сравнении ИК-спектров мембраны 
до и после фильтрации можно наблюдать изме-
нения в интенсивности некоторых полос, связан-
ные с засорением мембраны соединениями, со-

держащие алифатические цепи (2937, 2854 см–1),  
ароматические (802  см–1) и  карбоксильные 
(1630–1670  см−1) группы. ИК-спектр поверхно-
сти мембраны М-01 до и после фильтрации рас-
твора 100 г/л нефти в толуоле характеризовался 
такими же преображениями. 

Изменения состава образцов фильтрации 
нефти и  растворов нефти в  толуоле с  помощью 
ГХ-ПИД оценивали с  использованием мето-
да «отпечатков пальцев», который заключается 
в  сравнении хроматограмм без идентификации 
индивидуальных компонентов. 

На  хроматограммах исследованных образцов 
наблюдаются пики компонентов вплоть до  те-
тратриаконтана (рис.  7). Полученные данные 
показывают, что при использовании метода «от-
печатков пальцев» (сравнение общего профиля 
хроматограмм без идентификации каждого ком-
понента) в результате фильтрации не обнаружи-
вается дискриминация состава нефти по  более 
легколетучим растворимым в  толуоле компо-
нентам с  температурами кипения как минимум 
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до  478°С (тетратриаконтан), а  также по  относи-
тельному количеству линейных/разветвленных 
углеводородов. Последнее отдельно продемон-
стрировано на  примере сравнения площадей 
пиков для пристана/гептадекана и фитана/окта-
декана, которое оставалось постоянным в преде-
лах погрешности (табл. 3) до и после проведения 
мембранной очистки. 

Это говорит как об отсутствии собственной сорб-
ционной активности материала мембраны по отно-
шению к углеводородным компонентам, так и о ста-
бильности ее  свойств с  точки зрения появления 
нежелательных сорбционных эффектов в процессе 
работы, что подтверждает потенциал полученных 
мембран для несорбционного выделения асфальте-
нов и смол из нефти.
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Таблица 3. Соотношение площадей пиков изопреноидов и линейных алканов в растворе 100 г/л нефти в толуоле, 
пермеате и ретентате

Мембрана Соотношение площадей пиков Раствор нефти в толуоле 100 г/л Пермеат Ретентат

М-01
S(Pr)/S(C17H36) 0,44 ± 0,05 0,48 ± 0,01 0,47 ± 0,04

S(Ph)/S(C18H38) 0,74 ± 0,02 0,75 ± 0,02 0,79 ± 0,06

М-02
S(Pr)/S(C17H36) 0,39 ± 0,04 0,43 ± 0,06 0,41 ± 0,04

S(Ph)/S(C18H38) 0,71 ± 0,06 0,69 ± 0,04 0,66 ± 0,01
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ЗАКЛЮЧЕНИЕ

В  работе были исследованы ультрафильтра-
ционные ПАН-мембраны, полученные при  до-
бавлении в  формовочный раствор сораствори-
теля  — этилацетата. Показано, что добавление 
этилацетата в  формовочный раствор снижало 
в 1,5–2 раза его вязкость. Это также приводило 
к уменьшению размера пор получаемых мембран, 
причем в случае НМП данный эффект проявля-
ется сильнее, чем в случае ДМСО: средний размер 
пор у мембран, полученных из НМП, снижался 
с 28,8 до 9,6 нм, а у мембран из ДМСО — с 24,7 
до  19,2  нм. При  этом проницаемость мембран 
из  НМП была в  1,9–3,25  раза выше по  сравне-
нию с мембраной с ДМСО, несмотря на больший 
размер пор. Это можно объяснить более высокой 
связностью пор мембраны, полученной из  рас-
твора с НМП. Мембраны, полученные с добав-
лением этилацетата, задерживали более 95% 
асфальтенов из нефти и раствора 100 г/л нефти 
в  толуоле, что говорит о высокой эффективно-
сти таких мембран для выделения асфальтенов 
из  нефти. Анализ состава исходной смеси, пер-
меата и ретентата, полученных при фильтрации 
нефти и растворов нефти в толуоле, методом ГХ 
позволил продемонстрировать отсутствие соб-
ственной и  приобретенной в  процессе мем-
бранного разделения сорбционной активности 
материала по  отношению к  углеводородам, что 
было  бы нежелательным побочным явлением. 
Кроме того, мембрана, полученная из  ДМСО, 
была больше подвержена засорению в процессе 
фильтрации. В случае мембран из НМП промыв-
ка мембраны толуолом позволила восстанавли-
вать 44–97% проницаемости после фильтрации 
растворов нефти и  до  35% после фильтрации 
нефти, что говорит об  устойчивости мембраны 
к засорению. 
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