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Несмотря на многочисленные попытки при-
близиться к  решению проблемы возрастающих 
потребностей в  ископаемых топливах, многие 
аспекты по-прежнему остаются темой повышен-
ного интереса исследователей. Повышение цета-
нового числа дизельных топлив — важная задача 
с точки зрения их использования в смеси с фрак-
цией легкого газойля каталитического крекинга, 
так как необработанные смеси обладают низки-
ми цетановыми числами (требуемая величина 
ЦЧ ≥ 47) [1]. Данная задача может быть частич-
но решена за счет раскрытия цикла циклических 
углеводородов с  образованием линейных и  мо-
норазветвленных углеводородов в качестве про-
дуктов [2]. Длина углеродной цепи алкана также 
определяет его характеристики: чем цепь длин-
нее, тем выше цетановое число [3, 4]. Поэтому 
необходим поиск высокоактивных и  селектив-

1 Дополнительные материалы доступны в электронном виде по DOI статьи: 10.31857/S0028242125010062

ных катализаторов реакции раскрытия цикличе-
ских углеводородов до линейных алканов.

В  качестве модельной реакции раскрытия 
кольца была выбрана реакция превращения ци-
клогексана в н-гексан [5–7], поскольку молекула 
циклогексана является простейшим алицикли-
ческим углеводородом с  приемлемой стабиль-
ностью. В  реакции используют различные ка-
тализаторы, наиболее активные и  селективные 
из которых — катализаторы на основе благород-
ных металлов (Rh, Ru, Pt, Ir), причем наиболее 
активными и селективными по отношению к ли-
нейным алканам оказались катализаторы на ос-
нове Rh [7–9]. Некоторое применение находят 
также катализаторы на основе Ir, которые также 
демонстрируют достаточно высокую эффектив-
ность в раскрытии кольца. 
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Поведение катализатора во  многом зависит 
и  от  носителей, среди которых описаны Al2O3, 
SiO2, TiO2 и  цеолиты [10–17]. Важную роль 
в процессе раскрытия цикла играют как кислот-
ные центры носителя, так и металлические цен-
тры активного компонента [7]. Перспективность 
этого направления исследования показали также 
катализаторы на  основе оксида циркония в  ка-
честве носителя с  различными добавками [18]. 
Применение смешанного оксидного носителя 
CeO2–ZrO2 для исследуемой реакции не описа-
но, хотя широко используется в других процессах 
благодаря своим кислородным вакансиям и бо-
лее развитой поверхности по сравнению с инди-
видуальными оксидами Ce или Zr.

Поскольку в  настоящей работе исследованы 
сложные носители на  основе оксидов металлов 
большой (Ce  — 140) и  близкой к  ней (Zr  — 91) 
молярной массы, прямое исследование дисперс-
ности частиц Rh методами электронной микро-
скопии практически невозможно. Например, 
в  работе [19] были исследованы аналогичные 
системы и единственные кристаллические фазы, 
обнаруженные в  изображениях ПЭМ высокого 
разрешения, соответствовали CeO2. Кроме того, 
сложный состав носителя затрудняет количе-
ственную оценку его кислотных свойств; так, 
например, в работе [20] даже для более простой 
системы ИК-спектры диффузного отражения 
были проанализированы только качественно  — 
на предмет наличия или отсутствия кислотности.

Цель данной работы  — приготовление ро-
диевых катализаторов на  носителях CexZr1–xO2, 
их  исследование физико-химическими мето-
дами и  проведение каталитических испытаний 
в реакции раскрытия циклогексана под действи-
ем водорода для изучения воздействия природы 
и  физико-химических свойств носителя и  ката-
лизатора на активность и селективность в иссле-
дуемой реакции.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для выявления зависимости свойств ката-
лизаторов состава 1Rh/CexZr1−xO2 от  мольного 
соотношения церия и циркония в носителе тем-
платным методом синтезировали серию катали-
заторов состава, где x = 0; 0,25; 0,5; 0,5; 0,75; 1,  
далее обозначаемых как CeO2, Ce0,25Zr0,75O2, 
Ce0,5Zr0,5O2, Ce0,75Zr0,25O2, ZrO2. В  качестве тем-
плата использовали цетилтриметиламмония 
бромид (ЦТАБ). 

К  0,15  мольному раствору темплата в  воде 
добавляли предварительно растворенные в  не-
большом количестве воды навески нитратов 
церия и  цирконила и  при  интенсивном пере-
мешивании по  каплям вводили аммиак. Для 
уменьшения вязкости раствора на  этом этапе 
вносили небольшое количество спирта. Осадки 
подвергали старению в  растворе в  течение двух 
часов, после чего центрифугировали для отде-
ления осадков от  жидкости. Промывали осадок 
этанолом, разливали раствор по пробиркам и по-
вторяли центрифугирование. Влажные осадки 
оставляли на  ночь в  закрытых емкостях, затем 
два часа сушили при 120°C и прокаливали четы-
ре часа в  проточном кварцевом реакторе в  токе 
воздуха при  600°C; скорость нагрева составляла  
10°С/мин. Полученные материалы фракцио-
нировали на  ситах сечением 0,25–0,5  мм. Ро-
дий наносили из  водного раствора комплек-
са (NH4)3RhCl6 по  влагоемкости в  количестве  
1 мас.%. Образец сушили при 90°C шесть часов 
и  отжигали при  550°C четыре часа. Непосред-
ственно перед проведением реакции образец 
восстанавливали в  реакторе в  токе водорода 
(50  мл/мин) при  40 атм и  450°C в  течение трех 
часов.

Анализ текстурных характеристик катали-
заторов проводили путем измерения изотерм 
адсорбции–десорбции N2 при  77 K на  приборе 
ASAP 2020 Plus (Micromeritics, США). Нанесен-
ные родиевые катализаторы исследовали мето-
дом низкотемпературной адсорбции–десорбции 
азота: определение удельной площади поверх-
ности и  пористости использовали методы  БЭТ, 
БДХ и  метод t-графика. Перед адсорбцией  N2 
образцы вакуумировали при  300°C и  давлении  
10−5 мм Hg в течение четырех часов. 

Микрофотографии СЭМ и  ЭДС-спектры 
были получены с  помощью электронного мик
роскопа LEO EVO 50 XVP (Karl Zeiss, Германия) 
с  энергодисперсионным спектрометром INCA-
Energy 350 (Oxford Instruments, Великобритания). 

Рентгеновскую дифракцию проводили 
на образцах после прокаливания; использова-
ли дифрактометр  ARL X’TRA (Thermo Fisher 
Scientific, США) с излучением CuKa со скоро-
стью сканирования 1,2° в мин при комнатной 
температуре, а  также дифрактометр ДРОН-3.  
Исследование осуществляли в  диапазоне 
10°  <  2θ  <  70°. Для идентификации исполь-
зовали данные базы ICCD. Нанесенные ро-
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диевые катализаторы исследовали методом 
низкотемпературной адсорбции–десорбции 
азота.

Каталитическую реакцию раскрытия цик-
ла циклогексана исследовали при  температурах 
275–350°С, давлении 40 атм. Состав подаваемой 
в  реактор газовой смеси отвечал соотношению 
H2/циклогексан = 14,2, суммарный поток состав-
лял 54 мл/мин; загрузка катализатора — 0,3 см3. 
Состав реакционной смеси анализировали в ре-
жиме on line с  помощью газового хроматографа 
«Хроматэк Кристалл 5000» с  пламенно-иониза-
ционным детектором. Селективность по н-гекса-
ну (S*) рассчитывали по формуле:

S* = nн-гексан / (nн-гексан + Σni), 

где ni — количество молей каждого продукта ре-
акции, исключая н-гексан.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Низкотемпературная адсорбция– 
десорбция азота

Нанесенные родиевые катализаторы исследо-
вали методом низкотемпературной адсорбции–

десорбции азота. Изотермы адсорбции и десорб-
ции и распределения пор по размерам приведены 
на рис. 1, данные о текстурных характеристиках 
представлены в  табл.  1. На  изотермах адсорб-
ции и  десорбции наблюдается выраженный ги-
стерезис, а сами изотермы могут быть отнесены 
к IV типу по классификации IUPAC [21], что го-
ворит о мезопористости образцов. 

Все полученные носители характеризуют-
ся небольшими величинами удельной площади 
поверхности и  пористости. Зависимость удель-
ной площади поверхности и объема пор обратно 
пропорциональна содержанию оксида цирко-
ния в  образце (в  пределах ошибки метода). Од-
нако чистый оксид циркония не  укладывается 
в  эту зависимость: объем пор оказался больше, 
чем таковой для образца Ce0,25Zr0,75O2. Для всех 
распределений пор по  размерам наблюдается 
полимодальность и  преобладание пор опреде-
ленных размеров: для образцов 1Rh/Ce0,25Zr0,75O2  
и  1Rh/Ce0,5Zr0,5O2 максимум распределения 
приходится на  3–4  нм, для 1Rh/Ce0,75Zr0,25O2  — 
на  9  нм, для 1Rh/ZrO2  — на  20  нм. Обработка 
изотерм показала отсутствие микропор.

Наиболее пористыми оказались образцы 1Rh/
ZrO2 > 1Rh/CeO2 = 1Rh/Ce0,75Zr0,25O2; два остав-
шихся образца — наименее пористые. 
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Рис.  1. Результаты низкотемпературной адсорбции–десорбции N2: (a) изотермы адсорбции и  десорбции азота  
при 77 K, (б) распределение объема пор по размерам.
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Рентгенофазовый анализ
На  дифрактограммах носителей (рис.  2) 

рефлексы образцов с  большим содержанием 
циркония (образцы Ce0,25Zr0,75O2, ZrO2) совпа-
дают с  теоретическими положениями рефлек-
сов из  карточек базы данных ICDD. Дифрак-
тограммы образцов с  соотношениями CeO2, 
Ce0,75Zr0,25O2, Ce0,5Zr0,5O2 соответствуют фазе 
CeO2, смешанно-оксидные образцы, по-види-
мому, также содержат фазу CeO2 и фазу смешан-
ного оксида. Разрешение рефлексов этих фаз 
по  имеющимся дифрактограммам невозможно. 
Объяснение такого результата, скорее всего, со-
стоит в  том, что оксид циркония при  заданных 
условиях синтеза выделяется в  качестве отдель-
ной фазы в виде включений наночастиц в матри-
це оксида церия (как чистый ZrO2 либо смешан-

ный оксид); при  этом на  дифрактограмме фаза 
ZrO2 отсутствует, что можно объяснить тем, что 
размер частиц включений мал. 

Из дифрактограмм по формуле Шеррера [22] 
были рассчитаны примерные размеры кристал-
литов (табл. 2). Видно, что размер кристаллитов 
уменьшается с увеличением содержания в образ-
це оксида циркония.

Использование методов СЭМ 
и рентгеноспектрального микроанализа (РСМА)

Методами СЭМ–РСМА были получены элек- 
тронные микрофотографии образцов и  про-
ведено картирование по  элементам (рис. П1,  
см. «Дополнительные материалы»). В  энерго-
дисперсионных спектрах образцов носителей 

Таблица 1. Удельная площадь поверхности, удельный объем и диаметр пор в образцах

Образец SБЭТ, м2 г−1 Vобщ, см3 г−1 Vмезо, см3 г−1 Dпор, нм

1Rh/CeO2 55 0,11 0,11 2–40

1Rh/Ce0,75Zr0,25O2 42 0,11 0,11 3–40

1Rh/Ce0,5Zr0,5O2 29 0,04 0,04 2–20

1Rh/Ce0,25Zr0,75O2 32 0,04 0,04 2–20

1Rh/ZrO2 23 0,14 0,14 7–50
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Рис. 2. Рентгенограммы образцов носителей (цифры в квадратных скобках означают номер карточки базы дифрак-
тограмм ICDD).
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присутствуют полосы кислорода, а также церия 
и/или циркония в  соответствии с  составом но-
сителя. Количественная оценка элементного 
состава приведена в табл. 3. Атомные доли эле-
ментов, рассчитанные и экспериментально най-
денные на  поверхности образцов, отличаются 

от  заданных при  синтезе менее чем на  4%, что 
подтверждает приблизительное соответствие по-
верхностного состава брутто-составу образцов.

Каталитические измерения
Все катализаторы были исследованы в  реак-

ции гидроконверсии циклогексана в  н-гексан. 
Схема реакции представлена на рис. 3, а резуль-
таты каталитических исследований — на рис. 4.

Образец 1Rh/ZrO2 оказался наиболее активным 
при  всех температурах, а  при  температуре 275°С  — 
еще и  наиболее селективным (селективность 
по  н-гексану составила 77% при  конверсии цикло-
гексана 15%). Также хорошо себя показал образец 
1Rh/CeO2, для которого достигнута наибольшая 
селективность по  н-гексану 55% при  температуре 
325°С. 

Таблица 2. Размеры кристаллитов образцов

Образец <σ>, нм

CeO2 25

Ce0,75Zr0,25O2 21

Ce0,5Zr0,5O2 9

Ce0,25Zr0,75O2 8

ZrO2 28

Таблица 3. Расчетные и обнаруженные методом РСМА атомные доли атомов металлов на поверхности образцов

Образец Ce, ат.% 
расчет

Ce, ат.% 
найдено

Zr, ат.% 
расчет

Zr, ат.% 
найдено

CeO2 33,3 34,5 — —

Ce0,75Zr0,25O2 25 27,9 8,3 6,1

Ce0,5Zr0,5O2 16,7 19,2 16,7 13,1

Ce0,25Zr0,75O2 8,3 10,7 25 22,7

ZrO2 — — 33,3 29,4

+ другие

CH4 + C2H6 + другие + их изомеры
H2

Изомеризация

Сокращение цикла

Раскрытие цикла

Целевой
продукт

Рис. 3. Основные реакции превращения циклогексана в н-гексан и побочные реакции.
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Из рис. 4 видно, что при более высоких тем-
пературах более селективными и  производи-
тельными оказались носители, богатые церием. 
По  н-гексану максимум производительности 
образцов сдвинут в  область бо́льших темпера-
тур по  сравнению с  образцами, обогащенными 
цирконием (300 против 325°С). Достигнутая 
производительность превышает таковую для 
образцов коммерческих носителей на  осно-
ве ZrO2 из  исследования [18], составлявшую  
6,5  ммольн-гексана  гкат

−1  ч−1, и  несколько уступает 
результатам для родиевых катализаторов с носи-
телями на основе оксида алюминия, на которых 
были достигнуты значения до  12  ммольн-гекса-
на  гкат

−1  ч−1 [1]. Таким образом, полученные ре-
зультаты сопоставимы с  данными для сходных 
систем в тех же условиях каталитического экспе-
римента.

Полученные результаты говорят о  том, что 
наиболее пористые цирконийсодержащие ка-
тализаторы (в  виде индивидуального или сме-
шанного оксида) обладают наибольшей селек-
тивностью по н-гексану в области более низких 
температур. В  более высокотемпературной об-
ласти пористость материала выглядит наиболее 
значимым фактором в определении селективно-
сти и производительности по н-гексану.

ЗАКЛЮЧЕНИЕ

Темплатным методом была синтезирована 
серия мезопористых образцов 1Rh/CexZr1−xO2 
с  использованием ЦТАБ в  качестве темпла-
та. Диаметр пор образцов составил 2–50  нм, 
удельная площадь поверхности  — 23–55  м2 г−1. 
Отмечено, что последняя уменьшается по  мере 
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Рис. 4. Результаты каталитических испытаний в реакции раскрытия цикла циклогексана.
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увеличения доли циркония в  составе оксида. 
Для синтезированных носителей картирование 
по  элементам Ce и  Zr показало равномерность 
поверхностного состава образцов.

Изучение каталитической активности полу-
ченных образцов 1Rh/CexZr1−xO2 в реакции рас-
крытия циклогексана в  н-гексан показало, что 
наиболее активным и  селективным оказался 
катализатор 1Rh/ZrO2: при  температуре 275°С 
достигнута селективность 77% при  конверсии 
циклогексана 15%. Аналогичная зависимость 
наблюдается и для производительности по н-гек-
сану. Наиболее селективным в области более вы-
соких температур оказался образец 1Rh/CeO2.
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