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ПРОЦЕССЫ ОБЕССЕРИВАНИЯ  
УГЛЕВОДОРОДНОГО СЫРЬЯ  

И ОСНОВНЫЕ МЕТОДЫ  
ЕГО РЕАЛИЗАЦИИ

Мировой спрос на  энергетические ресурсы 
постоянно растет, при этом ужесточаются эко-
логические требования к  потребляемым мотор-
ным топливам, производимым из  сырой нефти. 
Это оказывает давление на  нефтеперерабаты-
вающую отрасль, которая сталкивается с  исто-
щением запасов легких нефтей и  увеличением 
направляемого на переработку высокосернисто-
го и  тяжелого сырья. Присутствие серосодержа-
щих соединений в топливе отрицательно влияет 
на  его качество, отравляет катализаторы нефте-
переработки, а  также несет угрозу окружающей 
среде из-за образования при сгорании топлива 
оксидов серы SОх, являющихся одной из причин 
кислотных дождей и  негативно отражающихся 
на здоровье людей. Эти обстоятельства привели 

к созданию строгих регламентов по содержанию 
серы в моторных топливах [1]. Так, на террито-
рии Российской Федерации сейчас действует 
норма по содержанию серы в товарных бензино-
вой и дизельной фракциях не более 10 ppm [2].

Существуют различные способы удаления 
сернистых соединений из  углеводородного сы-
рья: гидроочистка, гидрокрекинг, окислительное 
обессеривание, биодесульфуризация, экстрак-
ционное и адсорбционное обессеривание.

Гидроочистка — наиболее распространен-
ный метод обессеривания, его масштабы дости-
гают сотни миллионов тонн перерабатываемого 
сырья в  год, процесс капиталоемкий и  требует 
жестких условий проведения (высокие темпера-
тура и давление водорода), что приводит к неже-
лательным побочным реакциям [3].

Экстракционное обессеривание обеспечи
вает извлечение соединений серы из  углеводо
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родных фракций действием селективных экс-
трагентов, для чего используют полярные 
растворители и  ионные жидкости (ИЖ) [4, 5]. 
Экстракционное обессеривание с  использова-
нием ИЖ имеет ряд недостатков: неизвестно их 
влияние на  экосистему, возможность экстраги-
рования ароматических углеводородов, приме-
нение ИЖ ограничивает их высокая стоимость, 
несмотря на возможность регенерации, которая 
также требует затрат. Высокая взаимная раство-
римость ИЖ с нефтью затрудняет их отделение 
после экстракции, а  для эффективного обессе-
ривания требуется большое количество экстра-
гента, что увеличивает затраты и снижает общую 
эффективность метода [5].

Биодесульфуризация — мягкий метод превра-
щения нерастворимой в воде органической серы 
в водорастворимые соединения; его применение 
ограничено необходимостью использования 
высокоактивных биокатализаторов, большого 
объема реактора для процесса и  эффективного 
отделения живых микробных клеток от  нефти, 
а  также их хранения на  нефтеперерабатываю-
щих заводах [6]. Данный способ больше подходит 
в качестве дополнительного процесса доочистки 
нефтепродуктов к  технологии гидрообессери
вания [7].

При адсорбционном обессеривании выби-
рается подходящий твердый адсорбент для се-
лективной адсорбции соединений серы из  дис-
тиллятных фракций и  удаления их из  топлива. 
Ключевой момент адсорбционного обессерива-
ния — выбор адсорбентов, в  качестве которых 
в  настоящее время используют молекулярные 
сита, активированный уголь, оксиды металлов 
и  композитные металлоксидные глины [8]. Ос-
новная проблема этого метода — необходимость 
использования недорогого адсорбента с  боль-
шой площадью поверхности, высокой пори-
стостью и  возможностью специфически адсор
бировать сернистые соединения из  нефтяных 
фракций. Адсорбент должен быть легко регене-
рируемым, но  адсорбционная способность мо-
жет значительно снижаться после регенерации, 
что требует его частого обновления и увеличива-
ет эксплуатационные расходы [9, 10].

По сравнению с остальными методами окис-
лительное обессеривание наиболее перспектив
но благодаря мягким условиям процесса, 
доступным окислителям и  простоте его осуще
ствления  [11–14]. Окислительное обессерива-

ние — двухстадийный процесс удаления серы 
из  углеводородного сырья: сначала сернистые 
соединения в  углеводородной фракции окис-
ляют до  сульфонов действием подходящего 
окислителя в  присутствии жидкофазного или 
твердого гетерогенного катализатора, затем 
окисленные соединения серы отделяют от угле-
водородной фракции действием подходящих 
экстрагентов или адсорбентов, используя разли-
чия в  свойствах с  углеводородными компонен-
тами [1, 15].

Процессы окислительного обессеривания 
могут эффективно протекать как в гомогенных, 
так и  в  гетерогенных каталитических системах. 
Гомогенные катализаторы обладают высокой 
эффективностью, однако их основной недоста-
ток — сложность разделения и  невозможность 
повторного использования, что делает их менее 
предпочтительными в  практическом примене-
нии. Гетерогенные катализаторы на основе твер-
дых носителей с развитой поверхностью демон-
стрируют бо́льшую активность по  сравнению 
с жидкофазными гомогенными катализаторами, 
а  их применение облегчает возможность по-
вторного использования катализатора для по-
следующих реакций. При гетерогенизации раз-
личных систем в качестве носителей могут быть 
использованы Al2O3, SiO2, мезопористые сили-
каты, цеолиты и SBA [15], а в качестве активной 
фазы — оксиды металлов, полиоксометаллаты 
(ПОМ) и ИЖ [16–18]. Преимущество мезопори-
стых силикатов состоит в возможности их легкой 
модификации через поверхностные силаноль-
ные группы, что упрощает иммобилизацию ак-
тивной фазы [19].

Структурные параметры носителя, исполь-
зуемого для приготовления катализатора окис-
лительного обессеривания, особенно размер 
пор, должны обеспечивать беспрепятственную 
диффузию молекул ароматических серосодер-
жащих соединений, диаметр которых обычно 
варьируется от 1 до 1,5 нм [20]. Мезопористые 
носители, такие как SBA‑15 [21], SBA‑16 [22], 
MCM‑41 [23], HMS [24] и KIT‑6 [25], представ-
ляются наиболее подходящими для приготов-
ления гетерогенных катализаторов окисления 
сернистых соединений и, как следствие, окис-
лительного обессеривания углеводородного сы-
рья. Среди этих носителей SBA‑15 выделяется 
своей хорошо развитой поверхностью, равно-
мерным распределением пор и высокой терми-
ческой стабильностью. Наличие силанольных 
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групп на  поверхности SBA‑15 позволяет легко 
модифицировать его химическими соедине-
ниями, что открывает новые возможности для 
повышения каталитической активности окис-
лительной системы [21].

Оксиды переходных металлов в  качестве ак-
тивной фазы находят широкое использование 
при приготовлении катализаторов процесса 
окисления серосодержащих соединений благо
даря своей доступности, легкости синтеза и ста-
бильности в  присутствии органических рас- 
творителей. Каркас мезопористых материалов 
может быть модифицирован с  использованием 
соединений различных переходных металлов, та-
ких как молибден [14], ванадий [21], титан [26], 
железо [27], хром [28], кобальт [29] и  медь [30], 
что позволяет повысить каталитическую актив-
ность системы.

Несомненным преимуществом по  сравне-
нию с  монометаллическими катализаторами 
обладают биметаллические системы, в которых 
появляется возможность регулирования окис-
лительной способности контакта подбором 
бинарной смеси различных металлов, а  также 
добавления кислотной функции, усиливающей 
эту способность [31]. Это обстоятельство пред-
ставляется особенно важным, так как окисле-
ние сернистых соединений ускоряется в кислой 
среде [15]. Добавление второго металла может 
дополнительно повысить окислительно-вос-
становительные и кислотные свойства катали-
затора, способствующие росту эффективности 
реакций окисления.

Так, биметаллические катализаторы, содер-
жащие оксиды молибдена, имеют преимущество 
перед монометаллическими благодаря возмож-
ности реализации двух механизмов окисления: 
радикального и через образование пероксоком-
плексов, что приводит к высокой эффективности 
удаления серы из  углеводородных смесей  [32]. 
Добавки оксидов других металлов к оксидам мо-
либдена значительно улучшают селективность 
катализаторов, что позволяет достичь практиче-
ски полного удаления серы из модельных смесей 
и реальных нефтяных фракций. Таким образом, 
использование соединений двух металлов явля-
ется предпочтительным для формирования ак-
тивной фазы катализатора и эффективным спо-
собом создания гетерогенной каталитической 
системы для окислительного обессеривания 
углеводородного сырья.

ПОЛУЧЕНИЕ БИМЕТАЛЛИЧЕСКИХ  
КАТАЛИЗАТОРОВ

Известны следующие методы синтеза би-
металлических оксидных катализаторов: метод 
пропитки по  влагоемкости [33], метод совмест-
ного осаждения [34], золь–гель-метод [35], плаз-
менный синтез [36], атомно-слоевое осажде-
ние [37], синтез в обратных мицеллах [38], метод 
химического осаждения из газовой фазы [39].

Существуют два основных варианта метода 
пропитки: по влагоемкости и с избытком раство-
ра. В  пропитке по  влагоемкости носитель про-
питывают раствором, объем которого равен или 
немного превышает объем пор носителя [40], 
впитывание раствора в поры происходит за счет 
капиллярных сил. Во втором варианте проводят 
пропитку оксидов, цеолитов и  углеродного но-
сителя избытком растворов нитратов, ацетатов 
или хлоридов металлов. После сушки и  прока-
ливания при высокой температуре (300–800°C) 
образуется активная фаза. Данный метод позво-
ляет контролировать состав, но ограничивает ко-
личество наносимых металлов (5–10%) и может 
приводить к неравномерному их распределению 
на  носителе или укрупнению частиц активной 
фазы [42, 43].

Совместное осаждение позволяет точно кон-
тролировать состав, размер частиц и  дисперс-
ность металлов. При одновременном осаждении 
соединений металлов из  раствора добавление 
осадителя приводит к образованию нераствори-
мых соединений металлов. Полученный осадок 
выдерживают в  растворе, промывают и  сушат, 
формирование активной фазы происходит в про-
цессе прокаливания при высокой температуре. 
Этот этап требует тщательного контроля, так как 
может привести к  образованию нежелательных 
фаз, изменению размера пор носителя и появле-
нию примесей [43, 44].

Метод химического осаждения из  газовой 
фазы, основанный на взаимодействии газообраз-
ных соединений металлов с поверхностью носи-
теля при повышенных температурах, позволяет 
получать наноразмерные биметаллические ча-
стицы с узким распределением по размерам, что 
приводит к высокой удельной поверхности ката-
лизатора и  улучшенным каталитическим свой-
ствам. Метод является относительно простым 
и легко масштабируемым, что делает его перспек-
тивным для промышленного применения [45].
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Варьируя состав золь–геля, удается получать 
биметаллические катализаторы с высокой степе-
нью дисперсности и  равномерным распределе-
нием компонентов на атомном уровне, а изменяя 
условия синтеза (pH, температуру, соотношение 
соединений металлов, добавки), можно контро-
лировать размер, форму и  пористость получае-
мых материалов. На  первой стадии соединения 
металлов, такие как алкоксиды или соли, под-
вергаются гидролизу в растворе, с последующей 
конденсацией образующихся гидроксидов в кол-
лоидную систему — золь. Стадия старения золя 
позволяет увеличить его вязкость и модуль упру-
гости, подготавливая к процессу сушки. В зави-
симости от  метода сушки — на  воздухе (ксеро-
гель), в  сверхкритических условиях (аэрогель) 
или лиофильной сушкой (криогель) — можно 
получать материалы с  различной пористостью 
и  текстурой. На  заключительной стадии прока-
ливания при температурах 300–500°C удаляются 
остатки органики и  происходит окончательное 
формирование структуры катализатора [46–49].

При плазменном методе синтеза биметалли-
ческих катализаторов используют ионизиро-
ванный в плазме газ с высокой концентрацией 
возбужденных частиц, образующихся при пе-
редаче энергии к газу через электрический раз-
ряд или лазерное излучение. В плазму вводятся 
металлы или их оксиды в  виде газа, жидкости 
или мелкодисперсного порошка, высокоэнер-
гетические частицы плазмы сталкиваются с со-
единениями металлов, передавая им энергию 
и вызывая их распад на атомы, ионы или ради-
калы, которые взаимодействуют друг с  другом 
и  с  частицами плазмы, образуя наночастицы 
катализатора с заданным составом. Наночасти-
цы катализатора осаждаются на  поверхность 
носителя, быстрое охлаждение плазмы после 
синтеза «замораживает» структуру получен-
ных наночастиц, предотвращая их агрегацию 
и сохраняя высокую дисперсность катализато-
ра [50]. Так, для пероксидного окисления тио-
фена, тиоанизола и  дибензотиофена были ис-
пользованы композиции из оксидных слоев Ce, 
Zr, Ce + Zr, W, W + Zn, нанесенных на поверх-
ность титана методом плазменно-электролити-
ческого оксидирования. Различие в механизме 
каталитического действия композиций разного 
состава было выявлено методом радикального 
ингибирования [51].

Методами сканирующей (СЭМ) и  просве-
чивающей электронной микроскопии (ПЭМ), 

а также рентгеновской фотоэлектронной спек-
троскопии (РФЭС) установлено, что биметал-
лические катализаторы, полученные лазерным 
электродиспергированием плотно спрессован-
ных бинарных смесей пoрошков NiMo и NiWс 
нанесением на  оксид алюминия, содержащие 
на поверхности наночастицы оксидов Ni и Мо 
или W, находятся преимущественно в  окис-
ленном состоянии; при этом оба компонен-
та каждой пары равномерно распределены 
на поверхности носителя в виде частиц разме
ром 4–7 нм [52].

Биметаллические катализаторы, полученные 
таким образом, обладают высокой дисперснос
тью, равномерным распределением активной 
фазы и высокой чистотой. Благодаря взаимодей-
ствию различных металлов и воздействию плаз-
мы в  процессе синтеза формируются активные 
центры с уникальными электронными свойства-
ми. Данный метод имеет недостаток в виде огра-
ничения в соединениях металлов, так как не все 
материалы подходят для плазменного синтеза из-
за высоких температур и  реакционной способ-
ности плазмы, а  энергоемкость процесса также 
увеличивает стоимость синтеза.

Синтез в обратных мицеллах использует мик
роэмульсии для получения металлических частиц 
заданного размера, нанесенных на  носитель. 
Вначале формируют микроэмульсию, раство-
ряя соединения металлов в водной среде внутри 
неионногенного ПАВ. Добавление к этой смеси 
раствора восстановителя в масляной фазе приво-
дит к  образованию обратных мицелл. Введение 
носителя и последующее разрушение мицелл де-
стабилизирующим агентом, например ацетоном, 
обеспечивает адсорбцию частиц металла на  по-
верхности носителя [53].

Основанный на  поочередной подаче газо-
образных предшественников на  нагретую под-
ложку с разделением продувкой инертным газом 
метод атомно-слоевого осаждения (АСО) по-
зволяет создавать тонкие пленки и  точно кон-
тролировать состав, морфологию и  структуру 
наночастиц. Благодаря самоограничивающимся 
реакциям на  поверхности метод обеспечивает 
точный контроль толщины пленки с  атомар-
ной точностью, что делает его идеальным для 
создания равномерных покрытий на  сложных 
поверхностях в  биметаллических катализаторах 
и в микроэлектронике. Для создания высокоэф-
фективных катализаторов необходим также ато-
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марный контроль структуры активных центров, 
и именно метод атомно-слоевого осаждения по-
зволяет точно контролировать состав, однород-
ность, размер и структуру биметаллических ката-
лизаторов. Такой подход способствует глубокому 
пониманию механизмов катализа на атомарном 
уровне [54, 55].

Высокоэффективный и стабильный катализа
тор для восстановления в цинк-воздушных бата
реях получен осаждением смешанного Mn–Fe-
оксида методом атомно-слоевого осаждения 
(АСО). Полученные пленки Mn–Fe-оксида с ре-
гулируемым составом обладают равномерным 
покрытием из  кубической шпинели (Mn, Fe) 
на частицах углерода воздушного электрода. Би-
металлический катализатор продемонстрировал 
превосходную электрокаталитическую актив-
ность и стабильность в составе цинк-воздушных 
батарей, сохранив более 84% эффективности 
после 600 ч циклического использования, что 
значительно превышает показатели традицион-
ных катализаторов на  основе благородных ме-
таллов [56].

Каждый из  описанных методов синтеза би-
металлических катализаторов имеет свои специ
фические преимущества и  недостатки, что по-
зволяет выбирать наиболее подходящий способ 
синтеза в зависимости от требуемых свойств ка-
тализатора.

Плазменный синтез обеспечивает высокую 
дисперсность и  равномерное распределение 
активной фазы, однако он ограничен в  выборе 
соединений металлов из-за высоких темпера-
тур и энергоемкости процесса, а использование 
холодной плазмы для синтеза катализаторов 
показывает высокую эффективность в  реак-
циях дегидрирования. Метод АСО, в  свою оче-
редь, позволяет точно контролировать состав, 
морфологию и  толщину пленок, что делает его 
особенно перспективным для создания биме-
таллических и  триметаллических оксидных ка-
тализаторов. Метод пропитки представляет со-
бой один из  наиболее простых и  экономически 
выгодных способов синтеза биметаллических 
катализаторов, его применение позволяет лег-
ко контролировать соотношение компонентов 
и  обеспечивает высокую адсорбцию активной 
фазы на носителе. Это делает его особенно при-
влекательным для промышленного применения, 
где важны как эффективность, так и экономиче-
ская целесообразность.

ПРОЦЕССЫ ОКИСЛИТЕЛЬНОГО  
ОБЕССЕРИВАНИЯ В ПРИСУТСТВИИ 

БИМЕТАЛЛИЧЕСКИХ КАТАЛИЗАТОРОВ

В ходе окислительного обессеривания серни-
стые соединения окисляются в сульфоны и дру-
гие ценные продукты, обладающие более вы-
сокими полярными свойствами по  сравнению 
с углеводородными компонентами, что облегчает 
удаление серы из нефтяного топлива. Для дости-
жения высокой эффективности и селективности 
процесса ключевыми факторами являются состав 
катализатора и условия реакции [57]. В качестве 
катализаторов окислительного обессеривания 
применяются системы на основе металлооргани-
ческих каркасов (MOF) [58], полиароматических 
каркасов (PAF) [59], титановых нанотрубок [60], 
оксидов металлов [61], ИЖ [62].

Наибольший интерес представляют катали-
заторы на основе оксидов переходных металлов, 
так как они демонстрируют высокую активность 
и селективность в процессе обессеривания [63]. 
Монометаллические катализаторы на основе ок-
сидов переходных металлов были многократно 
исследованы в  процессе обессеривания нефтя-
ных фракций и  моделирующих их смесей при 
окислении молекулярным кислородом и другими 
окислителями и  показали свою достаточно вы-
сокую эффективность и  селективность [11–14].  
Например, катализатор на  основе оксида воль-
фрама, нанесенный на  магнитный мезопори-
стый кремнезем (MMS), продемонстрировал 
высокую эффективность в процессе окислитель-
ного обессеривания дизельного топлива; при 
оптимальных условиях реакции: температура 
120°C, продолжительность процесса 8 ч, удалось 
достичь 99,9% удаления серы для дифенилсуль-
фида, 4-метилдибензотиофена 98,2%, 4,6-диме-
тилдибензотиофена — 92,3% [64].

Способность переходных металлов легко ме-
нять свою степень окисления и  взаимодейство-
вать как с кислородом, так и с серосодержащими 
молекулами, а  также их способность образовы-
вать активные пероксокомплексы создает воз-
можность их использования в би- и полиметал-
лических системах и  делает их эффективными 
компонентами катализаторов окислительного 
обессеривания [65, 66].

Биметаллические катализаторы по  сравне-
нию с монометаллическими катализаторами де-
монстрируют лучшее распределение активных 
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центров. Это связано с синергетическим взаимо-
действием между двумя металлами, что способ-
ствует образованию более активных и доступных 
каталитических центров. Например, в  катали-
заторе на основе ванадий-марганцевых оксидов 
(VMn–MS) наблюдается улучшенное распре-
деление активных компонентов, что позволяет 
значительно повысить эффективность окисли-
тельного обессеривания. Синергетическое взаи-
модействие между ванадием и марганцем создает 
два разных пути реакции, что увеличивает ката-
литическую активность. В  результате катализа-
тор VMn–MS позволяет добиться почти 100%-го 
удаления серы за 60 мин при 80°C, что значитель-
но превосходит результаты в присутствии моно-
металлических катализаторов [67].

Примером использования биметаллических 
катализаторов для окисления сераорганических 
соединений является работа [68], где было осу-
ществлено полное окисление диметилдисульфи
да в  присутствии катализаторов PtAu и  CuAu, 
нанесенных на Al2O3, CeO2 и CeO2–Al2O3, среди 
которых катализатор CuAu проявил более высо-
кую активность, чем катализатор PtAu.

В работе [69] был изучен синергетический эф-
фект присутствия двух металлов — железа и  ва-
надия — в составе мезопористого носителя HMS 
при окислении ДБТ. Наличие железа и ванадия 
в катализаторе Fe–V–HMS создает синергетиче-
ский эффект, проявляющийся в повышении об-

щей кислотности и  каталитической активности 
системы. Данный катализатор демонстрирует 
способность практически полностью окислять 
ДБТ до  более полярного сульфона, что облег-
чает его адсорбцию на поверхности катализато-
ра (рис. 1).

Авторы указывают, что для извлечения окис-
ленных соединений из модельной смеси не тре-
буется применения растворителя, поскольку сам 
катализатор выполняет роль адсорбента, на  ко-
тором накапливаются окисленные соединения 
серы. Это двойное действие катализатора, со-
вмещающего функции активного компонента 
и  адсорбента, существенно увеличивает эффек-
тивность процесса обессеривания. Такая пер-
спектива одноэтапного процесса окислительно-
го обессеривания без необходимости экстракции 
сульфонов из  окисленного топлива с  использо-
ванием химических растворителей предоставля-
ет значительные преимущества для сероочистки 
топлива.

Системы на основе переходных металлов об-
ладают высокой эффективностью в  окислении 
серосодержащих соединений. Известно, что 
молибден привлекает значительное внимание 
благодаря своей высокой каталитической актив-
ности в процессе глубокого обессеривания [70]. 
Катализаторы на  основе молибдена обладают 
высокой селективностью при окислении ДБТ 
до  сульфона ДБТ, что делает их эффективными 
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Рис. 1. Предполагаемый механизм окисления дибензотиофена в присутствии катализатора Fe–V–HMS и окислителя 
трет-бутилгидропероксида (по материалам [69]).
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в процессе обессеривания. В работе [71] в каче-
стве добавки к молибденсодержащему катализа-
тору был предложен лантан, который улучшает 
каталитическую активность благодаря более эф-
фективному взаимодействию с  серосодержащи-
ми соединениями по сравнению с катализатором 
без лантана. Были синтезированы три биметал-
лических катализатора на  основе молибдена 
и  лантана (9%La1%Mo/ZSM‑11, 7%La3%Mo/
ZSM‑11 и 5%La5%Mo/ZSM‑11), из которых при 
различных температурах образец 7%La3%Mo/
ZSM‑11, обладая схожей эффективностью 
с  5%La5%Mo/ZSM‑11, был рекомендован как 
более предпочтительный вследствие меньшей 
токсичности молибдена. Все синтезированные 
катализаторы позволяют достичь 100%-ной кон-
версии ДБТ на 60-й минуте реакции.

В  работе [72] был исследован катализатор 
V/W–HMS в  процессе окислительного обессе-
ривания модельного дизельного топлива, со-
держащего ДБТ. Результаты показали, что он 
продемонстрировал высокую каталитическую 
активность, снижая содержание ДБТ в  сме-
си на  95%. Синергетический эффект ванадия 
и  вольфрама состоит в  уменьшении ширины 
запрещенной зоны металлической фазы ка-
тализатора, что облегчает переход электронов 
из  валентной зоны в  проводящую и  повышает 
каталитическую активность материала. Это спо-
собствует более легкому образованию свобод-
ных радикалов и  активных окислительных ча-
стиц, необходимых для окисления ДБТ.

В  работе [73] был изучен вероятный меха-
низм окисления сернистых соединений в при-
сутствии биметаллического катализатора  
WO3/MoO3/Al2O3 (рис.  2). По  мнению авторов, 
окисление ДБТ до  сульфона ДБТ начинается 
с  образования гидропероксомолибдата через 
нуклеофильную атаку трет-бутилгидроперок-
сида на активные центры молибдена на поверх-
ности носителя оксида алюминия. Затем ги-
дропероксомолибдат превращается в  пероксид 
молибдена с выделением трет-бутанола. Окис-
ление атома серы в молекуле ДБТ происходит че-
рез нуклеофильную атаку на  пероксокомплекс, 
что приводит к образованию сульфоксида и вос-
становлению пероксида молибдена, сульфоксид 
затем окисляется до сульфона (рис. 2).

В  работе [73] также было изучено влияние 
второго металла (вольфрама, титана или вана-
дия) на  активность молибденсодержащего ка-

тализатора. Эффективность катализаторов, со-
держащих смеси двух металлов, уменьшается 
в порядке: W/Mo > Ti/Mo > V/Mo. Катализатор 
16,5%MoO3/Al2O3 демонстрирует 90,5% конвер-
сии ДБТ, в то время как с добавлением вольфра-
ма (4,35%WO/16,52%MoO3/Al2O3) достигается 
100%-ное удаление ДБТ и 4,6-ДМДБТ. Это сви-
детельствует о том, что вольфрам улучшает дис-
персность молибдена и эффективность действия 
катализатора.

Использование биметаллических систем в ка-
тализаторах на  основе MoOx–VOx обладает зна-
чительным преимуществом по сравнению с мо-
нометаллическими катализаторами MoOx/Al2O3  
и  VOx/Al2O3 [74]. Добавление V к  Mo улучша-
ет каталитические свойства, способствуя более 
сильному связыванию молибденовых частиц 
с  носителем и  повышению их дисперсности. 
Катализатор с содержанием 5%Mo и 15%V про-
демонстрировал высокую эффективность, до-
стигая 97%-го окисления сернистых соединений 
и  снижая содержание серы в  углеводородной 
смеси с 619 до 17,3 ppm.

Рентгенофазовый анализ катализатора на ос-
нове оксидов Со  и  Мо выявил существование 
соединения CoMoO4 как основного компонента 
во всех образцах, с образованием Co3O4 или MoO3 
при избытке соответствующего металла  [75].  
Данные РФЭС указывают на  проявление элек- 
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тронодонорного эффекта кобальта, способст
вующего активации кислорода. Катализатор 
с  мольным соотношением Co : Mo = 2 : 1 при 
проведении окисления модельной смеси про-
демонстрировал высокую эффективность, обе-
спечивая практически полную конверсию ДБТ 
в  сульфон ДБТО2 в  мягких условиях. Высокая 
активность катализатора обусловлена как элек-
тронными эффектами, так и  наличием поверх-
ностных дефектов, а  его стабильность после 
многократного использования подтверждена ме-
тодом ИК-спектроскопии. Авторы предлагают 
механизм реакции, основанный на синергетиче-
ском взаимодействии кобальта и молибдена, где 
Co(II) активирует кислород, а  Mo(IV) образует 
с ним пероксидные частицы, окисляющие суль-
фиды (рис. 3).

Переходные металлы на  поверхности ката-
лизатора CoMo/SBA‑15 образуют два типа ак-
тивных центров: микрокристаллы молибдата, 
модифицированные Со, и  фазу β-CoMoO4, что 
придает таким катализаторам кислотные свой-
ства. Исследования показали, что именно моди-
фицированные кобальтом молибдатные микро-
кристаллы играют ключевую роль в  окислении 
ДБТ, в то время как частицы β-CoMoO4 не про-
являют каталитической активности. Повыше-
ние концентрации частиц CoMo препятствует 
образованию неактивной фазы β-CoMoO4 и од-
новременно способствует увеличению коли-
чества активных кобальт-модифицированных 
молибдатных микрокристаллов, что приводит 
к значительному улучшению каталитической эф-
фективности [76].

Для катализаторов H3PW12O40/SiO2-Al2O3 ха-
рактерно влияние кислотности поверхности ка-
тализатора на  эффективность окислительного 
обессеривания модельного топлива. Кислотные 
центры Льюиса играют ключевую роль в селек-
тивном окислении бензотиофена, способствуя 
его преимущественной адсорбции на  поверх-
ности катализатора, в  то  время как кислотные 
центры Бренстеда, напротив, снижают селек-
тивность процесса [77]. Активность катализато-
ра в окислительном обессеривании повышается 
с увеличением силы кислотных центров Льюиса, 
а также плотности кислотных центров Бренсте-
да [78].

Шпинелевые структуры, содержащие кобальт 
и марганец в виде частиц CoMn2O4 и MnCo2O4, 
были успешно применены для аэробного окис-

ления серосодержащих соединений [79]. Высо-
кая активность катализаторов была достигнута 
существованием в  шпинелевой структуре окис-
лительно-восстановительных пар Co2+/Co3+ 
и  Mn3+/Mn4+, а  также высокой подвижностью 
кислорода. Для аэробного окислительного обес-
серивания кислородом воздуха были успешно 
использованы СоМо биметаллические окси-
ды, которые эффективно катализировали окис-
ление тиофеновых соединений при 80–120°C 
и атмосферном давлении, в то время как инди-
видуальные оксиды Со  или Мо не  проявляют 
каталитической активности. Авторы полагают, 
что в  биметаллической системе частицы Со(II) 
проявляют способность активировать кислород, 
а  частицы Мо(IV) непосредственно участвуют 
в  окислении сульфидов, образуя реакционно-
способные частицы [80].

Высокую активность в  окислительной де-
сульфуризации модельной смеси на основе ДБТ 
проявили содержащие в качестве второго метал-
ла Ni, Co и  Zn биметаллические катализаторы 
на  основе оксида молибдена, обеспечивая при 
40°C 100%-ное удаление ДБТ из смеси с его со-
держанием 1000 ppm. В качестве носителя служил 
рекристаллизованный цеолит HY с  высокораз-
витой мезопористой структурой, пригодной для 
удаления объемной молекулы ДБТ. Присутствие 
никеля негативно воздействовало на  дисперсию 
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Рис.  3. Предполагаемый механизм активирования 
кислорода и  окисления сульфидов (по  материа-
лам [75]).
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частиц молибдена, а присутствие кобальта и цин-
ка улучшало дисперсию молибдена. Никель легко 
взаимодействует со структурой оксида алюминия, 
что приводит к выделению алюминия и разруше-
нию криcталлической структуры цеолита. Цинк 
и  кобальт ингибируют рост кристаллов МоО3, 
приводя к  улучшению дисперсности молибдена 
и повышению льюисовской кислотности [81].

Для окислительного обессеривания модель-
ной смеси и  реального топлива (бензина) была 
применена комбинированная экстракционно-
окислительная система, действующим началом 
которой были ванадий-хромсодержащие ката-
лизаторы, полученные двухстадийным методом 
пропитки мезопористого силиката KIT‑6. Наи-
лучшие результаты — удаление 97% ДБТ из  мо-
дельной смеси и 90% из реального топлива — по-
казал катализатор с максимальным содержанием 
ванадия, обеспечивавший также сохранение ак-
тивности после четырехкратного использования 
и регенерации [82].

Биметаллический церий-ванадиевый катали
затор, в  котором биметаллическая система 
CeVO4/BNNS нанесена на  нитрид бора BNNS, 
показал хорошие результаты в  окислительном 
обессеривании дизельного топлива. Это было 
достигнуто благодаря синергетическому эффек-
ту биметаллических оксидов CeVO4 и  высокому 
сродству BNNS к  серосодержащим соедине
ниям [83].

Полученный сольвотермальным синтезом би-
металлический катализатор SnMo-MOF показал 
хорошие результаты в окислении в мягких усло-
виях дифенилсульфида и  дифурфурилсульфида. 
Введение олова усиливало льюисовскую кислот-
ность поверхности катализатора, а перенос элек-
трона между оловом и  молибденом приводил 
к синергетическому биметаллическому эффекту, 
что в  итоге дало 98% селективности окисления 
сульфидов до соответствующих сульфонов [84].

Алюмосиликатные цеолиты, являясь уни-
версальным материалом, имеют огромное зна-
чение для промышленного катализа, посколь-
ку их кислотные центры Бренстеда и  Льюиса 
в значительной степени определяют активность, 
селективность и  стабильность каталитических 
реакций. В  отличие от  хорошо изученных кис-
лотных центров Бренстеда, участвующих в кис-
лотно-катализируемых реакциях, вопрос об эф-
фективности и роли кислотных центров Льюиса, 

образованных алюминием, связанным с карка-
сом цеолита или находящимся вне его, в реакци-
ях селективного окисления остается открытым. 
В работе [85] путем точного регулирования вре-
мени кислотной обработки ультрастабильного 
цеолита Y был образован трехкоординирован-
ный алюминий, и в результате сформировались 
трехкоординационные кислотные центры Лью-
иса, каталитически активные в реакции окисли-
тельного обессеривания с  использованием пе-
роксида водорода в качестве окислителя. Важно 
отметить, что активность была связана именно 
с  этими трехкоординированными кислотными 
центрами Льюиса, а  не  с  кислотными центра-
ми, связанными с  внекаркасным алюминием. 
Наиболее вероятная микроструктура трехко-
ординированного алюминия с  кислотностью 
Льюиса была подтверждена расчетами функци-
онала плотности. Важно отметить, что как су-
пероксидный, так и  гидроксильный радикалы 
являлись активными формами кислорода в  ка-
талитических реакциях. Благодаря своим харак-
теристикам, а именно размеру и свойствам ато-
мов, ионы Al3+ способны легко интегрироваться 
в  кремниевую структуру SBA‑15. Замещение 
ионов Si4+ ионами Al3+ приводит к образованию 
большого числа кислотных центров Бренстеда 
и  Льюиса, что значительно повышает кислот-
ность материала [26, 86, 87]. Для модификации 
носителя алюминием применяются различные 
методы, такие как пропитка по  влагоемкости, 
прямой синтез и постсинтез. Метод постсинте-
за обеспечивает наиболее эффективное вклю-
чение алюминия в  структуру материала [88], 
данные спектроскопии ЯМР подтверждают, что 
в  модифицированных материалах алюминий 
преимущественно находится в тетраэдрическом 
окружении, что свидетельствует об  успешном 
встраивании атомов алюминия в  кристалличе-
скую структуру материала [89]. Титано-алюмо-
силикатный катализатор превращает ДБТ в суль-
фоксид и сульфон через радикальный механизм 
реакции окисления (рис.  4). Сначала титан ре-
агирует с  пероксидом водорода, образуя тита-
новый пероксокомплекс, затем связь Ti–O–Si 
разрывается, образуя Ti–OOH и Si–OH, и ком-
плекс Ti-пероксид подвергается нуклеофиль-
ной атаке атомом серы с  образованием суль-
фоксида. На  следующей стадии сульфоксид 
дибензотиофена подвергается дальнейшему 
окислению другим титан-пероксокомплексом 
и образует дибензотиофенсульфон; катализатор  
Al–SBA‑15 в  отсутствие титана не  проявляет 
фотокаталитической активности [90].
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Совместное присутствие оксидов церия 
и  циркония при их нанесении на  SBA‑15 зна-
чительно повышает эффективность окисления 
сернистых соединений в углеводородном топли-
ве. Цирконий Zr4+, выступая как кислота Лью-
иса, повышает кислотность катализатора и  его 
окислительную способность за  счет высокой 
электрофильности церия, что усиливает адсорб
цию серы. Исследования катализаторов Ce–Zr-
SBA‑15, полученных прямым синтезом и  мето-
дом постсинтеза, подтвердили преимущества 
прямого включения Ce и  Zr в  матрицу SBA‑15. 
Такой подход обеспечивает более высокую дис-
персию оксидов Ce, меньший размер частиц 
и наличие изолированных частиц Zr4+, что в со-
вокупности приводит к повышению активности 

катализатора в реакциях окисления ДБТ, 4,6-ди-
метилдибензотиофена и бензотиофена с исполь-
зованием пероксида водорода в  качестве окис-
лителя [91]. В табл. 1 приведены сравнительные 
характеристики некоторых биметаллических ка-
тализаторов на основе мезопористых носителей 
для окислительного обессеривания модельных 
углеводородных смесей, содержащих органиче-
ские соединения серы. В  цитируемых работах 
было достигнуто практически полное удале-
ние серы из  модельных углеводородных смесей 
за счет синергетического эффекта биметалличе-
ских систем, обеспечивающих протекание реак-
ции за  счет дополнительного эффекта второго 
металла и/или появления кислотной функции 
катализатора включением оксида алюминия.

– – – – – – – –

–

– – – – – – –

––– – – –

Рис. 4. Предполагаемый механизм окисления ДБТ в присутствии катализатора Al–Ti-SBA‑15 (по материалам [90]).
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Таблица 1. Биметаллические катализаторы окислительного обессеривания

Катализатор Количество металлов, % Субстрат Окислитель, H2O2 Конверсия, %
30%FeOx/SBA‑15[92]

30%FeOx/Zr-SBA‑15
30%Fe, Si/Zr = 10 ДБТ кат. = 0,1 г,

[O]/S = 20,
30 мин, 60°С

100

30%V2O5/Zr-SBA‑15[93] 30%V, Si/Zr = 10 ДБТ кат. 1 г/л,
[O]/S = 10,
40 мин, 60°С

>99

Ti–Al-SBA‑15[90] 7,5%Ti ДБТ кат. 0,05 г/20 мл,
H2O2 = 0,5 мл, 
40 мин, 70°С

92,7

VOx–Ga-SBA‑15[94]

VOx–Al-SBA‑15
V/Si = 1/30, Si/Ga = 20, Si/Al = 20 ДБТ кат. 60 мг/20 мл, 

[O]/S = 12,
15 мин, 60°С

100

Ce–SBA‑15[91]

Ce–Zr-SBA‑15
Si/Ce = 20, Si/(Ce + Zr) = 20 ДБТ,

БТ
кат. 60 мг,
[O]/S = 12,
15 мин, 60°С

100,
80

H3PW12O40/ZrO2-SiO2
[95] 25,9%HPW ДБТ кат. 0,1 г/10 мл, 

[O]/S = 2,
240 мин, 70°С

100

20%HPW/Zr-HMS[96] 20%HPW,
Si/Zr = 10

ДБТ кат. 70 мг/10 мл, 
H2O2 = 0,3 мл,
30 мин, 60°С

95

MoZn/RHY[97] 10%Mo,
2%Zn

ДБТ кат. 10 г/л,
[O]/S = 10,
30 мин, 40°С

100

0,05%Fe5%Mo/SBA‑15[98] 0,05%Fe, 5%Mo ДБТ кат. 0,0189 г,
[O]/S = 2 : 1,
30 мин, 60°С

100

5%W/5%Al-SBA‑15[99] 5%W,
5%Al

ДБТ кат. 0,0189 г,
[O]/S = 4 : 1,
30 мин, 60°С

100

7%Mo/1%Al-SBA‑15[100] 1%Mo,
1%Al

ДБТ кат. 0,0189 г,
[O]/S = 6 : 1,
30 мин, 60°С

100

ПЕРСПЕКТИВНЫЕ НАПРАВЛЕНИЯ  
ИСПОЛЬЗОВАНИЯ БИМЕТАЛЛИЧЕСКИХ 

КАТАЛИЗАТОРОВ

Влияние промотирования молибденом на ак-
тивность и  стабильность кобальтового катали-
затора окисления CO было исследовано в  ра-
боте  [101], в  которой был синтезирован в  одну 
стадию кобальтовый катализатор, нанесенный 
на  мезопористый носитель SBA‑15 и  промоти-
рованный молибденом, обладающий высокой 
устойчивостью к  воздействию водяного пара 
и диоксида серы (SO2) в процессе окисления CO 
при 730°C. Наличие в составе катализатора высо-
кодисперсных частиц Co3O4 и молибдена приво-
дит к конверсии CO на уровне 90%, а катализатор 
без молибдена показывает значительно меньшую 
конверсию CO — всего 55%. Повышенная эф-
фективность промотированного катализатора 
объясняется сильным взаимодействием между 

кобальтом и молибденом, так как это взаимодей-
ствие приводит к росту кислотных свойств ката-
лизатора.

Соотношение Si/Al в  мезопористом алюмо-
силикатном носителе (Al–SBA‑15) оказывает 
влияние на  каталитические свойства нанесен-
ных на него наночастиц серебра и на активность 
катализаторов не  только в  окислении сераорга-
нических соединений, но и в других процессах, 
например в окислении CO в присутствии водоро-
да [102]. Из синтезированных методом пропитки 
Ag-катализаторов с  различным содержанием Al 
катализатор Ag/Al-SBA‑15 с  мольным соотно-
шением Si/Al = 200 продемонстрировал наилуч
шие показатели активности, селективности 
и  стабильности в  окислении СО в  присутствии 
водорода. Введение небольшого количества Al 
способствует формированию высокодисперсных 
наночастиц Ag, что увеличивает каталитическую 
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активность и  замедляет их агрегацию. Возрас-
тание содержания Al также улучшает структуру 
носителя и  увеличивает количество кислотных 
центров Льюиса и  Бренстеда. Серебро, в  свою 
очередь, обеспечивает высокую активность ка
тализатора при низких температурах [102]. 
В процессе сухого риформинга метана высокую 
активность проявил также катализатор Ni–Al 
на  носителе Al-SBA‑15, полученный в  присут-
ствии HCl + NaCl наряду с  катализаторами 
Ni–Zr, Ni–Ti с использованием различных сред 
(HCl, NaCl, HCl + NaCl) [103].

Для очистки топочного газа от  SO2 и  NOx 
при низкой температуре были использованы 
железосодержащие и  железомедные металло
органические каркасы для активации пероксо-
моносульфата. Эти каркасы, содержащие окис-
лительно-восстановительные пары Fe(II)/Cu(I) 
и  Fe(III)/Cu(II), инициируют активацию перок-
сосульфата и  генерируют реакционноспособ-
ные частицы, окисляющие SO2 на  100% и  NOx 
на 86,5% [104]. В работе [105] для окисления пе-
роксидом водорода пироконденсата, полученно-
го с этиленовых установок различной мощности, 
использованы в  качестве катализатора содержа-
щие РЗЭ (церий, лантан) полиоксовольфрама-
ты, нанесенные на  микроструктурированный 
углеродный материал; конверсия непредельных 
углеводородов при окислении фракции достигает 
95–99%.

Биметаллические катализаторы показывают 
высокую активность и  селективность в  реакци-
ях изомеризации ароматических углеводородов, 
превосходя монометаллические аналоги, что обу-
словлено синергетическим эффектом между дву-
мя металлами. Биметаллический катализатор уве-
личивает выход желаемых разветвленных алканов 
и уменьшает количество нежелательных низкомо-
лекулярных газообразных продуктов [106]. В ходе 
реакций, протекающих на  поверхности бифунк-
циональных катализаторов, существует жесткая 
конкуренция между изомеризацией и крекингом 
(β-расщепление). При изомеризации алканов 
на  металлических центрах платины происходит 
также их дегидрирование. Образующийся алкен 
протонируется с  образованием карбoкатиона, 
который далее перегруппировывается в  разветв
ленный алкен с  дальнейшим его гидрированием 
на металлических центрах до изоалкана.

Цеолиты — эффективные катализаторы кре-
кинга и  изомеризации углеводородов, но  они 

подвержены закоксовыванию, что со  временем 
снижает их активность [107]. Добавление бла-
городных металлов, таких как платина и  пал-
ладий, предотвращает накопление кокса, акти-
вируя связи углерод–углерод, углерод–водород 
и водород–водород, а также способствует очист-
ке поверхности катализатора водородом. Даже 
небольшое количество платины увеличивает 
срок службы цеолита, способствуя диссоциации 
водорода и  образованию протонов, блокирую-
щих образование кокса на  кислотных центрах, 
а эффективность благородных металлов зависит 
от их расположения на цеолите [108]. Катализато-
ры, содержащие металл двух типов, превосходят 
по  активности и  селективности монометалли-
ческие системы в  реакции изомеризации геп-
тана [109]. Значительное количество кислотных 
центров Льюиса и  более высокая дисперсность 
платины способствуют улучшению показателей 
процесса гидрирования–дегидрирования и сни-
жению доли нежелательных реакций гидрогено-
лиза и крекинга.

Прямой синтез аминов из  спиртов представ-
ляет собой важную каталитическую реакцию, для 
которой широко используются гомогенные биме-
таллические комплексы на основе рутения и ири-
дия, действующие по  механизму заимствования 
или автопереноса водорода [110]. Гетерогенные 
никельсодержащие катализаторы, такие как нано
частицы никеля [111, 112] и  смешанные оксиды, 
демонстрируют хорошую эффективность, но об-
ладают рядом недостатков, включая высокую 
стоимость, низкую дисперсность металла, выще-
лачивание никеля и  снижение активности при 
низких содержаниях. Биметаллические катализа-
торы Ni–Pd представляют собой перспективную 
альтернативу благодаря уникальным свойствам, 
возникающим в  результате взаимодействия пал-
ладия и  никеля на  оксиде алюминия. Палладий, 
склонный к диспергированию в виде PdOx и агре-
гации при высоких температурах, модифицирует 
свойства никеля, который может образовывать 
различные оксидные частицы с  разным взаимо-
действием с носителем. Это синергетическое взаи
модействие приводит к  повышению активности 
в  реакциях гидрирования, что открывает новые 
возможности для разработки более эффективных 
и  экологически чистых процессов синтеза ами-
нов. В работе [113] добавление β-циклодекстрина 
(β-CD) при приготовлении биметаллических ка-
тализаторов NiPd/Al2O3 методом пропитки улуч-
шает их эффективность в реакции аминирования 
спиртов. β-CD способствует образованию более 
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мелких и легко восстанавливаемых частиц оксида 
никеля, обогащенных поверхностным никелем. 
Это происходит благодаря комплексообразова-
нию β-CD с  предшественником Ni, что препят-
ствует образованию трудновосстанавливаемых 
алюминатов никеля.

Гидрирование на  биметаллических катали-
заторах часто основано на  активации водорода 
с помощью двух атомов металла и переносе ак-
тивированного водорода к  молекуле-мишени, 
что было показано при исследованиях биядер-
ных металлоорганических комплексов PtRh. 
Синергетический эффект двух металлических 
центров обеспечивает высокую эффектив-
ность диссоциации водорода и  последующего 
восстановления субстрата, например N2O [114]. 
Селективное гидрирование ацетилена до этиле-
на представляет собой сложную задачу, посколь-
ку этилен также может быть легко гидрирован 
до  этана, что снижает выход целевого продук-
та. При решении этой задачи биметаллические 
катализаторы демонстрируют превосходную 
активность и  селективность по  сравнению с  их 
монометаллическими аналогами. Вхождение 
в состав катализатора двух разных металлов при-
водит к  синергетическому эффекту, улучшаю-
щему их каталитические свойства. В работе [115] 
исследована селективная гидрогенизация аце-
тилена на  биметаллических катализаторах AgPd 
и  CuPd, синтезированных на  носителях TiO2 
и  SiO2. Хемосорбционные измерения показа-
ли, что Pd предпочитает поверхностное распо-
ложение в  присутствии Cu и  подповерхностное 
в присутствии Ag. Рентгеновская спектроскопия 
показала более равномерное распределение на-
ночастиц на  SiO2, структура поверхности ката-
лизатора динамична и зависит от газовой среды 
и применяемого носителя. Биметаллические ка-
тализаторы продемонстрировали повышенную 
селективность по этилену (>92%) по сравнению 
с монометаллическими Pd-катализаторами.

Удаление нитрат-ионов (NO3⁻) с использова-
нием биметаллических катализаторов и водоро-
да (H2) — перспективный метод очистки воды, 
активно исследуемый в настоящее время, а аль-
тернативой водороду может выступать муравьи-
ная кислота. Наиболее эффективными для этого 
процесса признаны катализаторы, сочетающие 
благородный металл (палладий или платину) 
с  промотирующим металлом (медь, олово, ин-
дий). Ключевую роль играют биметаллические 
центры, где активные центры благородного ме-

талла соседствуют с  промоторами. Монометал-
лические центры, изолированные от промотора, 
каталитической активностью в  восстановлении 
нитратов не обладают [116].

Гидротермальный синтез катализаторов  
Cu/Sn-SBA‑15 проводили варьированием мето
дов добавления источников металла: до или после 
предшественника кремнезема, в виде порошка или  
растворенными в спирте, а также в конкурентных 
(алюминиевых) ионных средах [117]. Добавление 
металлов, особенно в растворенном виде, способ-
ствовало улучшению текстурных свойств, увели-
чивая толщину стенок SBA‑15, вероятно, за счет 
ионных притяжений в высокозаряженных средах. 
FTIR-спектроскопия выявила изменения в  об-
ласти растяжения гидроксильных групп и  зна-
чительное увеличение кислотности Бренстеда 
и Льюиса, особенно и при добавлении алюминия. 
Катализаторы продемонстрировали высокую 
конверсию этанола при умеренных температурах, 
с максимальной селективностью по ацетальдеги-
ду при 300°C. Алюминиевая среда положительно 
влияла на  нанесение олова, но  не  меди. Олово 
увеличивало кислотность Льюиса, медь — кон-
версию этанола при низких температурах и  ко-
личество микро- и  мезопор, возможно, за  счет 
образования оксидов металлов. В  целом олово 
и медь оказались эффективными для селективно-
го окисления, дегидрирования, гидроксилирова-
ния, парового риформинга и реакций этерифика-
ции [118]. Для проведения высокотемпературного 
окисления метана были использованы модифи-
цированные платиной содержащие палладий ка-
тализаторы на основе гексаалюмината марганца. 
Такие катализаторы с  атомным соотношением  
Pt/Pd менее 0,25 обладают сопоставимой или 
меньшей активностью, но с большей стабильно-
стью при повышенных температурах и скоростях 
газового потока по сравнению с палладиевым ка-
тализатором [119].

ЗАКЛЮЧЕНИЕ

Биметаллические катализаторы на  основе 
переходных металлов и носителей с кислотной 
функцией демонстрируют значительные преи-
мущества по  сравнению с  монометаллически-
ми аналогами в окислительных процессах, что 
связано с  синергетическими взаимодействи-
ями между двумя металлами, усиливающими 
каталитическую активность и  эффективность 
действия каждого активного компонента. Вы-
бор оксидов переходных металлов, таких как 
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железо, молибден, вольфрам, медь, кобальт, 
для создания биметаллических катализаторов 
основан на  их высокой активности в  окисли-
тельных процессах, а  включение алюминия 
в  состав катализатора способствует увеличе-
нию его кислотности и  положительно сказы-
вается на окислении соединений серы, являю-
щихся основаниями Льюиса. Синергетические 
эффекты между компонентами и  высокая 
стабильность катализаторов свидетельствуют 
об их высоком потенциале для разработки эко-
логически безопасных методов обессеривания 
углеводородного сырья. Имеются и недостатки 
известных биметаллических катализаторов: все 
еще остаются открытыми вопросы, касающие
ся оптимизации их состава, структуры и усло-
вий реакции для достижения максимальной 
эффективности; известные биметаллические 
катализаторы требуют значительного количе-
ства металла в составе активной фазы, что уве-
личивает их стоимость и ограничивает коммер-
ческое применение. Длительное время реакций 
в таких системах затрудняет их использование 
в промышленных условиях, где требуется высо-
кая скорость процесса; потребление значитель-
ного объема окислителя также является серьез-
ным недостатком.
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