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Методом нанесения рутенийсилоксанового олигомера на  поверхность наноразмерного оксида 
титана(IV) получены Ru-содержащие катализаторы. Физико-химические свойства катализаторов 
исследованы методами рентгеновской фотоэлектронной микроскопии (РФЭС), рентгенофазово-
го анализа (РФА), растровой (РЭМ) и  просвечивающей электронной микроскопии (ПЭМ), ме-
тодом низкотемпературной адсорбции азота, термопрограммируемого восстановления водородом 
(ТПВ-H2). Катализаторы испытаны в реакции гидрирования гваякола в додекане при температурах 
150–250°C и давлении водорода 5 МПа. Показано, что катализатор, полученный из рутенийсилок-
сана, обладает более высокой активностью в гидрировании гваякола по сравнению с аналогом, по-
лученным из хлорида рутения.
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Ограниченные запасы нефти и экологические 
инициативы служат мотивацией для разработки 
альтернативных источников энергии, которые 
не только экологически безопасны, но и эконо-
мически выгодны [1, 2]. Быстрый пиролиз, как 
термохимический путь преобразования и  сжи-
жения биомассы, был предложен в  качестве 
возможных решений для производства возоб-
новляемых видов топлива и  химически ценных 
соединений из  лигноцеллюлозной массы [3–6].
Быстрый пиролиз в  сочетании с  процессом ка-
талитической обработки — один из популярных 
методов преобразования биомассы в  жидкое 

топливо для получения стабильных дезоксигени-
рованных продуктов [7]. Ряд исследований пока-
зали, что это менее затратный путь по сравнению 
с  другими процессами, такими как фермента-
ция и газификация. Масло пиролиза — продукт 
жидкой фазы, полученный в результате быстро-
го пиролиза и  обычно называемый бионефтью, 
содержит более 400 различных соединений, об-
разующихся при термическом распаде гемицел-
люлозных, целлюлозных и  лигниновых фрак-
ций биомассы [5, 8–10]. Высокое содержание 
кислорода в ряде соединений является негатив-
ным фактором, а его каталитическое удаление —  
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важной задачей, чтобы сделать бионефть при-
годной для использования в  качестве источни-
ка топлива [11, 12]. Бионефть также нестабильна 
в  процессе хранения, и  с  течением времени ее 
свойства меняются вследствие взаимодействия 
между компонентами [13–15].

Гидродеоксигенация (ГДО) пиролизной био-
нефти, полученной из  лигнина, представляет 
значительный интерес как потенциальная тех-
нология повышения ее стабильности для за-
мены обычных видов топлива и  химических 
продуктов на  основе нефти. Различные иссле-
дования сообщали о  катализаторах на  основе 
Ru, используемых в  гидродеоксигенации пиро-
лизной бионефти и  ее модельных соединений, 
и  были предложены различные стратегии для 
настройки каталитических свойств с целью по-
вышения производительности и углубления по-
нимания реакции ГДО [16–20]. Катализаторы 
ГДО на основе рутения находятся в центре вни-
мания, поскольку они демонстрируют превос-
ходную каталитическую активность, будучи при 
этом экономически эффективными по  сравне-
нию с другими катализаторами на основе благо
родных металлов. Рутениевые катализаторы 
активны в  присутствии кислородсодержащих 
соединений и воды [16–18]. Следует также отме-
тить, что Ru является на порядок дешевле, чем Pt 
и Pd, и более активен в реакции ГДО, чем Ni или 
Fe [19]. Несмотря на  преимущества, использо-
вание рутениевых (как и других) катализаторов 
в  промышленности ограничено, прежде всего 
вследствие возможных отложений кокса на  по-
верхности частиц рутения, которые приводят 
к  увеличению их размеров и  снижению актив-
ности. Поэтому уместно разработать стабиль-
ные рутениевые катализаторы. Одним из  таких 
решений может быть создание наноразмерных 
и атомарных катализаторов, используя для этого 
силаны, которые образуют связь Ru–O–Si, что 
способствует повышению стабильности нано
частиц рутения [20].

Недавно нашей группой был разработан ме-
тод использования рутенийсилоксановых оли-
гомеров для «пришивки» Ru через силоксановые 
мостики к поверхности наноразмерного диокси-
да титана с  гидрофильной поверхностью, про-
тестированный в  реакции фотокаталитического 
разложения органического красителя. Исследо-
вание подобных катализаторов в реакции гидро-
дезоксигенации модельных соединений бионеф-
ти также становится перспективным.

Цель работы — получение рутенийсодержа-
щих катализаторов на  основе наноразмерного 
диоксида титана и рутенийсилоксанового олиго-
мера и исследование активности данных катали-
заторов в процессе гидрирования гваякола.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Наноразмерный диоксид титана(IV), трис(ме
тилдиэтоксисилокси)рутений Ru[OSi(Me)(OEt)2]3  
и  катализатор на  основе рутенийсилоксаново
го олигомера Ru-Sil/TiO2 были получены по ме-
тодике, описанной в  работе [21]. Образцы 
сравнения Ru-Сl/TiO2, Ru/TS‑1, Ru/ZSM‑5,  
Ru/HMS были получены пропиткой по  влаго-
емкости с использованием хлорида рутения(III)  
(≥ 46,5 мас.%, ч., ОАО «Аурат», Россия) в расче-
те на  конечное содержание рутения в  образцах 
0,5  мас.%. После пропитки все образцы были 
высушены и  прокалены в  муфельной печи при 
400°C в течение 5 ч с последующим восстановле-
нием в атмосфере водорода со скоростью нагрева 
2°C/мин при 400°C.

Методом РФА был проанализирован фазовый 
состав рутенийсодержащих катализаторов. Диф-
рактограммы регистрировали в диапазоне углов 
2θ 10°–80° с  шагом 0,02° со  скоростью 1°/мин 
на приборе Rigaku Rotaflex D/MAX-RC (Rigaku, 
Япония). Фазовый состав определяли с исполь-
зованием справочной базы данных порошковых 
дифрактограмм ICDD PDF‑2.

Исследование морфологии полученных ка-
тализаторов проводили методом сканирующей 
электронной микроскопии (СЭМ) с  исполь-
зованием электронного микроскопа Carl Zeiss 
NVision 40 (Германия), оснащенного анализа-
тором X-Max Oxford Instruments (80 мм2), и про-
свечивающей электронной микроскопии (ПЭМ) 
на приборе JEOL JEM‑2100 (Япония) с ускоряю-
щим напряжением 200 кВ.

Текстурные характеристики образцов опре-
деляли методом низкотемпературной адсор-
бции азота с  использованием прибора ASAP 
2020 (Micromeritics). Перед анализом образцы 
вакуумировали 2 ч при 250°C. Удельная по-
верхность рассчитана по БЭТ при относитель-
ном парциальном давлении Р/Р0 = 0,2; общий 
объем пор определен по BJH при относитель-
ном парциальном давлении Р/Р0 = 0,95. Об-
щий объем и диаметр пор определены по ветви  
адсорбции.
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Термопрограммируемое восстановление водо
родом (ТПВ-H2) проводили в кварцевом реакторе 
с использованием AutoChem 2950HP (Micromeri
tics Instrument Corp.; Норкросс, Джорджия, США). 
Предварительно образцы продували в  токе сме-
си водорода 7 об.% в аргоне (расход 20 мл/мин)  
для стабилизации базовой линии, затем темпе
ратуру повышали со  скоростью 10°C/мин  
до  350°C с  регистрацией сигнала детектором 
по теплопроводности.

Исследование катализаторов методом РФЭС 
проводили на  спектрометре PREVAC EA15 
(PREVAC sp. z o. o., Польша), оснащенном 
полусферическим анализатором высокого раз-
решения. В  качестве источника излучения был 
выбран AlKα (hν  = 1486,6 эВ, 150  Вт). Давление 
остаточных газов в  ходе измерения не  более  
5 × 10–9 мбар. Эффект зарядки учитывали, ис-
пользуя в качестве внутреннего стандарта поло-
жение линии C1s (Есв = 284,8 эВ) атомов углеро-
да, входящих в состав поверхностных примесей. 
Деконволюцию спектров проводили с  исполь-
зованием программного обеспечения CasaXPS 
с учетом параметров фона, рассчитанных по ал-
горитму Ширли.

Гидрирование гваякола осуществляли в сталь-
ном автоклаве (внутренний объем 10 см3), снаб-
женном магнитной мешалкой и  манометром. 
В автоклав загружали 20 мг мелкорастертого ка-
тализатора и 1 г гваякола в 3 г н-додекана. Авто-
клав продували и заполняли водородом до давле-
ния 50 атм. Реакцию проводили при 150–250°C. 
После окончания реакции автоклав охлаждали 
до  комнатной температуры под струей воздуха, 
давление стравливали до атмосферного.

Количественное определение продуктов реак
ции гидрирования гваякола проведено на  хро
матографе Кристаллюкс‑4000 М (ООО «НПФ 
Мета-хром», Россия), снабженном пламенно-
ионизационным детектором, капиллярной ко
лонкой PetrocolTM (Supelco), 0,25 мм × 50 м, газ-
носитель — гелий; качественное определение 
продуктов реакции — методом хромато-масс-
спектрометрии на  приборе Finnigan MAT 95 XL 
(ThermoQuest, Германия), оборудованном хрома-
тографом с капиллярной колонкой Varian VF‑5MS 
(30 м × 0,25 мм × 0,25 мкм), газ-носитель — гелий.

Расчет селективности (%) по продуктам реак-
ции и конверсия (%) гваякола были произведены 
по формулам:

Селективность=
S

S
100%,i

пр∑ (1)

Конверсия= ,
∑
∑ 
S

S S
пр

пр гв

×
+
100%

(2)

где Si — площадь пика i-продукта, ∑Sпр — сумма 
площадей пиков всех продуктов реакции гидри-
рования гваякола, Sгв — площадь пика гваякола.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Порошок, полученный в результате гидро-
термально-микроволновой обработки раствора 
сульфата титанила представляет собой одно-
фазный нанокристаллический диоксид титана 
со структурой анатаза (PDF #21-1272) и размером 
частиц диоксида титана, определенным по фор-
муле Шеррера и  составляющим ~9 нм, о  чем 
свидетельствует дифрактограмма, приведен-
ная на рис. 1 без примесей других полиморфов. 
Синтез катализатора из  рутенийсилоксанового 
олигомера не  привел к  изменениям дифракто-
граммы. В  то  же время дифрактограмма образ-
ца, полученного пропиткой диоксида титана 
хлоридом рутения(III) с последующими сушкой 
и отжигом, демонстрирует уширение рефлексов 
для фазы анатаза без изменения фазового со-
става. Фаза металлического рутения обнаружена 
не была.

Удельная поверхность образцов диоксида ти-
тана, полученного гидротермально-микровол-
новой обработкой, и  катализаторов Ru-Sil/TiO2 
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Рис. 1. Дифрактограммы образцов исходного нано-
размерного TiO2, Ru-Sil/TiO2 и Ru-Cl/TiO2.
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и  Ru-Cl/TiO2 на  его основе составляет 285, 321, 
264  м2/г соответственно. Рост площади удель-
ной поверхности согласуется с  данными РФЭС, 
так как на поверхности катализатора Ru-Sil/TiO2 
присутствует значительное количество крем
ния(IV).

В табл. 1 представлен состав поверхности ка-
тализаторов Ru-Sil/TiO2 и Ru-Cl/TiO2. Концент
рация в них атомов Ti, O, C, Ru и Si составляет 
16,82; 54,97; 18,9; 0,26; 9,05 ат.% и Ti, O, C, Ru и Cl 
21,34; 53,1; 24,9; 0,15; 0,51 ат.% соответственно.

Для оценки фазового состава поверхно-
сти исследованных образцов была проведена 
деконволюция спектров C1s, O1s и Ru3d, также 
приведены спектры Si2p и Cl2p (рис. 2). Декон-
волюция спектра C1s и Ru3d (рис. 2а) показала, 
что углерод находится в  трех состояниях: C–C, 
C–OH и O=C–OH, в то время как энергия свя-
зи рутения соответствует элементу в окисленной 
форме, так называемой Ruδ+. Кислород (рис. 2б) 
находится в трех формах для образца RuCl/TiO2: 
O2– (O–Ti), —OH и H2Oадс, и четырех формах для 
образца Ru-Sil/TiO2: O2– (O–Ti), O2– (O–Si), —OH 
и H2Oадс. Указанные в табл. 1 значения энергии 
связи для Ru3d соответствуют рутению в  окис-
ленном состоянии и согласуются с литературны-
ми данными [22].

На  микрофотографиях (рис.  3) катализатора 
Ru-Sil/TiO2, полученных методом РЭМ, не вид-
ны частицы Ru как в изображении вторичных, так 
и обратно отраженных электронов; в то же время 
по  данным рентгеноспектрального микроана-
лиза удалось зафиксировать присутствие в ката-
лизаторах Ru, Si и Cl. На микрофотографиях же 

Рис. 2. РФЭС-спектры катализаторов Ru-Sil/TiO2 и Ru-Cl/TiO2: (а) C1s + Ru3d, (б) O1s, (в) Si2p и Cl2p.
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Таблица 1. Состав поверхности полученного Ru-Sil/
TiO2 и Ru-Сl/TiO2 катализаторов

Элемент
энергия связи, эВ

Ru-Sil/TiO2

доля, ат.% доля, 
ат.%

Ti
2p3/2 458,8 (TiO2)

16,82 100
2p1/2 464,5 (TiO2)

O

1s 530,2 (Ti–O)

54,97

39,6

1s 532,1 (Si–O) 26,1

1s 531,6 (Ti–OH) 27,2

1s 534,5 (H2O адс.) 7,1

C

1s 286,3 (С–С)

18,9

74,9

1s 284,7 (С–С) 15,9

1s 288,9 (O=С–O) 9,2

Ru 3d5/2 281,2 (Ruδ+) 0,26 100

Si 2p 103.4 9,05 100

Элемент Ru-Сl/TiO2

Ti
2p3/2 458,8 (TiO2) 21,34 100

2p1/2 464,5 (TiO2)

O

1s 530,5 (Ti–O) 53,10 81,3

1s 531,9 (Ti–OH) 17,6

1s 533,8 (H2O адс.) 1,1

C

1s 286,3 (С–С)

24,90

70,0

1s 284,7 (С–С) 20,0

1s 288,9 (O=С–O) 10,0

Ru 3d5/2 281,1 (Ruδ+) 0,15 100

Cl 2p 289,9 (Cl–) 0,51 100



НЕФТЕХИМИЯ   том 65   № 2   2025

101ВЫСОКОЭФФЕКТИВНОЕ ГИДРИРОВАНИЕ ГВАЯКОЛА НА Ru/TiO2...

Ru-Sil/TiO2-катализатора, полученного методом 
ПЭМ, также можно наблюдать отсутствие агло-
мератов наночастиц рутения, в то время как ча-
стицы TiO2 связаны между собой –SiO-сеткой.

По  данным термопрограммируемого восста
новления водородом (рис. 4) можно заключить, 

(а) (б)

(в)

50 нм 50 нм

200 нм200 нм

(г)

Рис.  3. Микрофотографии, полученные с  использованием РЭМ и  ПЭМ: для Ru-Sil/TiO2-катализатора (а, б, в);  
для Ru-Сl/TiO2-катализатора (г).
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Рис. 4. Профили ТПВ-H2 для образцов Ru-Sil/TiO2 
и Ru-Cl/TiO2.

что восстановление окисленной формы Ru  
на поверхности диоксида титана происходит при 
разных условиях. Так, для образца, получен-
ного из  рутенийсилоксанового олигомера про-
цесс восстановления Ru завершается до  150°C 
в то время как для образца, полученного из хло-
рида Ru, четко разделены две стадии восста-
новления, что может соответствовать восста-
новлению из  оксидной фазы и  оксохлоридной 
фазы, причем вторая стадия протекает до 230°C 
(см. экспериментальную часть).

Продуктами реакции гидродезоксигенации 
гваякола являются циклогексанол, циклогекса-
нон, смесь цис-/транс-метоксициклогексано-
лов, циклогексан, метанол и фенол (рис. 5).

Результаты каталитических экспериментов 
для образца Ru-Sil/TiO2, приведенные на рис. 6, 
демонстрируют существенное возрастание ак-
тивности катализатора в реакции гидрирования 
гваякола с увеличением температуры. Стоит от-
метить, что с  повышением температуры с  200 
до  250°C количество циклогексанола и  цикло-
гексана возрастает, а количество метоксицикло-
гексанола уменьшается (рис. 6).
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цис-/транс-
Рис. 5. Схема реакции гидрирования гваякола.
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Рис.  6. Зависимость конверсии и  селективности продуктов гидрирования гваякола при температуре 150–250°C, 
5 МПа, 1 ч для катализатора Ru-Sil/TiO2.

Таблица 2. Гидрирование гваякола в н-додекане на Ru-катализаторах при 200°C, 50 атм Н2, τ = 1 ч

Показатель Ru-Sil/TiO2 Ru-Сl/TiO2 Ru/TS‑1 Ru/ZSM‑5 Ru/HMS

Содержание Ru, мас.% 0,48 0,49 0,96 0,98 0,91

Конверсия гваякола 98,2 3,2 64,8 90,9 79,2

Селективность

Метанол 1,7 16,5 7,4 3,5 4,4

Циклогексан 0,8 1,0 – 3,9 1,4

Циклогексанол/
циклогексанон 17,3 9,5 14,4 16,9 19,4

Метоксициклогексанол 80,2 65,5 78,3 74,6 74,7

Фенол – – – 1,1 0,2
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В табл. 2 приведены значения конверсии и се-
лективность по продуктам для образцов сравне-
ния на основе нанесенного на цеолит рутения.

Конверсия для образца, полученного из руте-
нийсилоксана, на порядок выше, чем для образ-
ца, полученного пропиткой хлоридом Ru, и  со-
поставима с конверсией для образцов сравнения 
на основе цеолитов с содержанием Ru ~1 мас.%. 
Стоит отметить также тот факт, что для всех ката-
лизаторов при данной температуре селективность 
по  метоксициклогексанолу составила ~75–80%. 
Для образцов, содержащих Ti, не  наблюдается 
продуктов прямой дезоксигенации, в  то время 
как для образцов Ru/ZSM‑5 и Ru/HMS в продук-
тах реакции присутствует фенол.

ЗАКЛЮЧЕНИЕ

В ходе исследования были получены катализа-
торы Ru/TiO2 из рутенийсилоксанового олигоме-
ра и наноразмерного диоксида титана. Методом 
РФЭС выявлено, что при данном способе полу-
чения Ru-Sil/TiO2 (0,5 мас.%) рутений находится 
в окисленном состоянии; методами электронной 
микроскопии не  обнаружены крупные частицы 
Ru. Исследования каталитических свойств в ре-
акции гидрирования гваякола в  н-додекане по-
казали, что катализатор Ru-Sil/TiO2 (0,5 мас.%), 
полученный из рутенийсилоксанового олигоме-
ра, обладает большей активностью по  сравне-
нию с аналогичным катализатором, полученным 
пропиткой из хлорида Ru(III) с селективностью 
по  метоксициклогексанолу ~75–80%. Прове-
денное сравнение Ru-Sil/TiO2 (0,5 мас.%) с  ка-
тализаторами Ru-Cl/TiO2, Ru/TS‑1, Ru/ZSM‑5, 
Ru/HMS показало, что при одинаковых усло-
виях проведения реакции, конверсия гваякола 
не  уступает значениям конверсии на  катализа-
торах на  основе цеолитов. В  ходе исследования 
было установлено, что для образцов содержащих 
Ti не наблюдается продуктов прямой дезоксиге-
нации, в частности фенола.
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