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Впервые исследован состав асфальтенов и смол концентрированного остатка гидрокрекинга гудро-
на (КОГГ), получаемого по технологии комбинированного термо- и гидрокрекинга в суспензион-
ной фазе. Содержание асфальтенов в КОГГ составляет 48,6 мас.%, а смол — 14,3 мас.%. Сопоста-
вительный анализ асфальтенов и смол КОГГ методами ИК-спектроскопии, масс-спектрометрии 
матрично-активированной лазерной десорбции/ионизации (МАЛДИ), элементного анализа, ТГА, 
ЭПР и ААС позволил выявить основные особенности их состава и структуры в сравнении с соот-
ветствующими компонентами в исходном гудроне. В результате показано, что асфальтены и смолы 
КОГГ отличаются от  соответствующих компонентов исходного гудрона меньшей молекулярной 
массой, более высокой долей ароматических и конденсированных структур и более чем в 30 раз 
сниженным содержанием ванадия и  никеля. Полученные результаты позволяют предположить, 
что в составе асфальтенов и смол КОГГ в основном присутствуют новообразованные за счет поли-
конденсации компоненты, а также определенные полиароматические структуры, которые не могут 
быть конвертированы в дистилляты в условиях гидрокрекинга.
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При переработке тяжелого нефтяного сырья 
(ТНС) все более востребованы процессы пол-
ной конверсии сырья в  дистилляты без образо-
вания нефтяных остатков и кокса. Значительное 
содержание асфальтенов и смол в ТНС — основ-
ная причина образования продуктов уплотнения 
(кокса) в  термокаталитических процессах, что 
приводит к  быстрой дезактивации традицион-
ных катализаторов на  носителе и  обусловлива-
ет жесткие ограничения к  свойствам исходного  
сырья [1–3].

Гидрокрекинг в  суспензионной фазе — один 
из  вариантов преодоления подобных ограниче-
ний, в основном за счет усиления реакций гид
рирования в  присутствии диспергированных 
катализаторов с  большой удельной площадью 
поверхности [4–6].

Процессы, основанные на различных вариан-
тах гидрокрекинга ТНС и остатков в присутствии 
суспензионных мелкодисперсных катализато-
ров, представили различные компании [7]. В по-
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следние годы на нефтеперерабатывающем заводе 
АО  «ТАИФ-НК» реализован уникальный про-
цесс комбинированного термо- и гидрокрекинга 
гудрона в  суспензионной фазе, который позво-
ляет достигать выхода светлых нефтепродуктов 
до 98,2% и глубины переработки до 98,6% [8, 9]. 
Технология отличается от других вариантов гид
рокрекинга наличием отдельного реакторного 
блока, работающего с суспендированным слоем 
добавки, адсорбирующей на  своей поверхности 
асфальтены, смолы, гетероатомные компоненты 
и соединения металлов, что позволяет очистить 
сырье от  нежелательных компонентов и  на  сле-
дующей стадии использовать традиционный 
гидрокрекинг со  стационарным слоем катали-
затора для получения товарных топливных неф
тепродуктов. На  первой стадии процесса при 
температуре 430–470°C и давлении 200–210 атм 
в  присутствии специальной угольной добавки 
без каталитического воздействия получается 
очищенный от соединений металлов гидрогени-
зат, а  также 2–3% (в расчете на сырье) концен-
трированного остатка гидрокрекинга гудрона 
(КОГГ), который представляет собой твердый 
непластичный (при комнатной температуре) ма-
териал, содержащий в основном смолы, асфаль-
тены, карбены и карбоиды (рис. 1).

Асфальтены и  смолы, в  зависимости от  ус-
ловий процесса, претерпевают ряд изменений 
в  процессе гидрокрекинга. Известно, что при 
высоких температурах и  давлении в  подобных 
процессах существенно меняется состав и струк-
тура асфальтенов [10–16].

Основные изменения в структуре асфальте-
нов связаны с  отрывом алкильных заместите-

лей, которые являются наиболее лабильными 
при повышении температуры, с  образованием 
свободных радикалов. Снижение доли алифа-
тического углерода в асфальтенах сопровожда-
ется снижением атомного отношения H/C, со-
ответственно, возрастает доля ароматических 
структур. Молекулярная масса также умень-
шается при удалении алифатических цепей, 
при этом молекулярно-массовое распределе-
ние (ММР) становится более узким. Несмотря 
на  значительный объем исследований, прове-
денных в последние годы в этом направлении, 
до  настоящего времени отсутствует инфор-
мация об  изменениях в  составе асфальтенов 
и смол в процессе гидрокрекинга в присутствии 
адсорбирующих добавок.

Глубина переработки нефти определяется 
не только количеством выработки дистиллятных 
фракций, но  и  направлением использования 
остатка, в котором концентрируются преобразо-
ванные асфальтены и смолы. В последнее время 
наблюдается возрастающий интерес исследова-
телей к  методам получения ценных продуктов 
(углеродных материалов, наполнителей для по-
лимеров, сорбентов, катализаторов, суперкон-
денсаторов и  пр.) на  основе нефтяных асфаль-
теновых концентратов [17–22]. Анализ состава 
и  свойств асфальтенов и  смол КОГГ позволит 
выбрать оптимальное направление его примене-
ния с  возможностью получения высокомаржи-
нальных продуктов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Гудрон и  КОГГ были предоставлены 
АО  «ТАИФ-НК». Все растворители и  реагенты 
имели квалификацию не  ниже х. ч. В  качестве 
адсорбента применяли силикагель марки АСКГ 
(ГОСТ‑3956-76), который перед использованием 
сушили (5 ч, 150°C).

КОГГ разделяли на  толуолнерастворимую 
(ТНР) и  толуолрастворимую (ТР) части путем 
добавления 20-кратного избытка толуола. По-
лученную смесь подогревали до  100°C при пе-
ремешивании, затем охлаждали до  комнатной 
температуры. Фильтрованием отделяли осадок 
ТНР, который затем промывали толуолом в ап-
парате Сокслета до  обесцвечивания стекающе-
го растворителя, с  последующим высушивани-
ем до  постоянной массы в  вакуум-сушильном 
шкафу при 80°C. Из  фильтрата (ТР) отгоняли 
растворитель и после высушивания до постоян-

Рис.  1. Внешний вид концентрированного остатка 
гидрокрекинга гудрона (КОГГ).
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ной массы получали твердый темно-коричне-
вый порошок, который затем фракционировали 
на  асфальтены, смолы и  масла (углеводороды). 
Для выделения асфальтенов исходный объект 
(гудрон или ТР) сначала разбавляли небольшим 
количеством толуола и  перемешивали до  по-
лучения гомогенного вязкого раствора, после 
чего добавляли 40-кратный избыток н-гексана 
и выдерживали в течение 24 ч. Затем асфальте-
ны отфильтровывали и  промывали н-гексаном 
в аппарате Сокслета до обесцвечивания стекаю
щего растворителя с  последующим высушива
нием до  постоянной массы. Деасфальтизат 
разделяли на  масла и  смолы колоночной хро-
матографией на  силикагеле марки АСКГ. Для 
десорбции масел использовали н-гексан, для де-
сорбции смол — смесь толуол : изопропанол =  
= (50 : 50 об.%).

Масс-спектры МАЛДИ получали на приборе 
UltraFlex III MALDI-TOF/TOF (Bruker Daltonik 
GmbH, Германия) в линейном режиме с исполь-
зованием Nd : YAG-лазера (355 нм). Регистриро-
вали положительно заряженные ионы, в качестве 
матрицы применяли 1,8,9-тригидроксиантрацен. 
Матрицу и  анализируемый образец наносили 
на  металлическую мишень MTP AnchorChipTM 
последовательно в виде 1%-ных растворов в то-
луоле объемом 0,5 мкл. Значения максимальной 
молекулярной массы Mmax рассчитывали по дан-
ным МАЛДИ-спектров по методике, описанной 
в работе [23].

Содержание водорода и  углерода в  образ-
цах определяли на  CHNS-O-анализаторе Euro 
EA3028-HT (EuroVector, Italy), содержание V и Ni 
в  образцах — на  атомно-абсорбционном спек-
трометре с  электротермической атомизацией 
«МГА‑1000» («Люмекс», Россия). Содержание V 
и  Ni рассчитывали по  калибровочной кривой, 
полученной с использованием в качестве эталона 
стандарта (Oil based standard solution, Specpure® 
V 5000 μg/g; Specpure® Ni 5000 μg/g) производ-
ства Alfa Aesar (Германия).

Спектры электронного парамагнитного ре-
зонанса (ЭПР) регистрировали на  спектроме-
тре Elexsys E500 (Bruker, Германия) с  микро-
волновым мостом Bruker ER049X в  X-диапазон 
(9,67 ГГц) при комнатной температуре. Условия 
эксперимента при регистрации спектров: мик
роволновая мощность 0,63 мВт, амплитуда моду-
ляции 1(4) Гс, время развертки 60(240) с, посто-
янная времени 328 мс.

ИК-спектры образцов регистрировали 
на  приборе Spectrum One FTIR Spectrometer 
(Perkin Elmer, США) в диапазоне 4000–400 см–1. 
Образцы наносили в  виде раствора в  толуоле 
на  диск из  KBr и  высушивали до  образования 
тонкой пленки. На основе интенсивности харак-
теристичных полос поглощения в  ИК-спектрах 
были рассчитаны спектральные коэффициенты, 
характеризующие структурно-групповой состав 
изучаемых объектов. Алифатичность показывает 
суммарную долю метиленовых и метильных групп 
по  отношению к  ароматическим связям С=С 
(D720+1380/D1600). Ароматичность отражает 
долю С=С-связей в  ароматических фрагментах 
по  отношению к  С–H-связям в  алифатических 
структурах (D1600/D1460). Разветвленность от-
ражает долю С–H-связей в метильных фрагмен-
тах по отношению к С–H-связям в метиленовых 
группах (D1380/D720). Конденсированность 
показывает долю С=С-связей в  ароматических 
фрагментах по отношению к С–H-связям в аро-
матических структурах (D1600/D740+860).

Термическую стабильность образцов иссле-
довали на  приборе синхронного термического 
анализа STА 449 F3 Jupiter (NETZSCH, Герма-
ния). Навеску образца массой 5–18 мг помеща-
ли в алюминиевый (при нагреве до 600°C) либо 
корундовый тигель (при нагреве до 1000°C) с от-
верстием на  крышке. Аргон высокой чистоты  
подавали при скорости потока газа 70 мл/мин. 
Измерения выполняли при скоростях нагрева 
10 К/мин.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В табл. 1 представлены данные по компонент-
ному составу исходного гудрона и КОГГ.

Таблица 1. Компонентный состав гудрона и  концен-
трированного остатка гидрокрекинга гудрона (КОГГ)

Образец

Содержание, мас.%
ТНР 

(карбены + 
карбоиды)

ТР
масла 

(углеводороды) смолы асфаль
тены

Гудрон – 49,9 39,8 10,3

КОГГ 13,9 23,2 14,3 48,6

Предполагается, что в составе ТНР кроме об-
разовавшихся в  процессе гидрокрекинга карбе-
нов и  карбоидов имеется также незначительное 
количество тонкодисперсных частиц отработан
ной угольной добавки. По  сравнению с  гудро-
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ном, в  составе КОГГ в  2,8 раза меньше смол, 
но  значительно выше содержание асфальтенов 
(в  4,7 раза). За  счет усовершенствования тех-
нологии в  настоящее время из  тяжелого остат-
ка после первой стадии гидрокрекинга удается 
обеспечить максимальный отбор дистиллятных 
фракций, поэтому содержание масел в  составе 
КОГГ имеет такое низкое значение.

Сравнение МАЛДИ-спектров асфальтенов 
и  смол (рис.  2) показывает, что максимальные 
значения Mmax для этих компонентов из  КОГГ 
смещаются в  область меньших масс по  сравне-
нию с гудроном.

При сравнении результатов определения со-
держания водорода и  углерода для асфальтенов 
и смол КОГГ фиксируется уменьшение отноше-
ния Н/C по сравнению с гудроном (табл. 2). Так-
же можно отметить, что Н/С для смол из КОГГ 
и  асфальтенов гудрона имеет одинаковое зна
чение.

Таблица 2. Элементный состав асфальтенов и  смол, 
выделенных из гудрона и КОГГ

Образец
Содержание,  

мас.% H/C
Содержание,  

мас.%
С Н V Ni

Асфальтены

Гудрон 84,42 7,72 1,10 0,1590 0,0291

КОГГ 84,78 6,02 0,85 0,0050 0,0049

Смолы

Гудрон 78,46 10,11 1,41 0,0250 0,0040

КОГГ 86,31 7,91 1,10 <0,0010 0,0006
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Рис. 2. МАЛДИ-спектры асфальтенов (а) и смол (б), выделенных из гудрона и КОГГ.

Особый интерес при изучении преобразова-
ния асфальтенов и смол в процессе гидрокрекин-
га представляет вопрос изменения содержания 
ванадия и никеля, которые в нефтяных объектах 
существуют в виде металлокомплексов порфири-
нового типа. Последние относятся к тем немно-
гим соединениям в составе смол и асфальтенов, 
для которых возможно их извлечение и  струк-
турная идентификация. Данная особенность яв-
ляется одной из причин повышенного интереса 
к  данному классу соединений и  дает возмож-
ность лучше понять природу взаимодействия ас-
фальтенов с  металлопорфиринами в  различных 
процессах [16].

Ранее нами было показано, что ванадил-
порфирины выполняют связующую функцию 
в процессе агрегирования асфальтенов [24]. Из-
вестно, что в процессе гидрокрекинга асфальте-
ны и металлокомплексы ванадила и никеля уча-
ствуют в  формировании кокса и  становятся его 
частью [25]. Полученные результаты по содержа-
нию ванадия и  никеля показывают значитель-
ное снижение данного показателя в асфальтенах 
и смолах КОГГ по сравнению с соответствующи-
ми компонентами гудрона. В итоге в асфальтенах 
содержание V и Ni меньше в 31,8 и 5,9 раза соот-
ветственно, а в смолах ванадия — в 25 раз мень-
ше, никеля — в 6,7 раза.

В  этом отношении интересным является 
более существенное снижение содержания V 
по сравнению с Ni. В результате гидрокрекинга 
соотношение V/Ni в асфальтенах и смолах КОГГ 
становится практически равным единице. При 
этом соотношение V/Ni в  асфальтенах гудро-
на составляет 5,46 и в смолах 6,25, что является  
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характерным для нефтей Волго-Уральского ре
гиона [26]. В  целом наблюдаемое снижение 
содержания ванадия и  никеля объясняется 
адсорбцией основного количества соединений 
этих металлов на поверхности суспендирован-
ной добавки на первой стадии процесса гидро-
крекинга.

Методом ЭПР-спектроскопии проведен со-
поставительный анализ по  содержанию основ-
ных парамагнитных компонентов в асфальтенах 
КОГГ и гудрона (табл. 3).

Содержание ВК в асфальтенах КОГГ сущест
венно ниже по  сравнению с  асфальтенами гуд
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Рис. 3. ИК-спектры асфальтенов (а) и смол (б) (компоненты гудрона — черного цвета, компоненты КОГГ — красного 
цвета).

Таблица 3. Содержание ванадиловых комплексов (ВК) 
и свободных стабильных радикалов (ССР) в асфальте-
нах по данным ЭПР-спектроскопии

Образец
Содержание, ×1018 отн. сп. г.

ВК ССР

Гудрон 6,2 54,3

КОГГ 0,4 35,4

рона, что подтверждает выявленные закономер-
ности на  основании результатов определения 
содержания ванадия методом атомно-абсорб
ционной спектроскопии. Содержание ССР в ас-
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фальтенах КОГГ составляет 65% от  величины 
данного показателя в асфальтенах гудрона и, как 
видно, меняется не столь существенно в сравне-
нии с ВК. Как известно, количество ССР в неф
тяных асфальтенах отражает долю конденсиро-
ванных полиароматических структур, а  также 
локальное окружение парамагнитных центров, 
сопряжение с которыми может стабилизировать 
свободные радикалы [27, 28].

Сравнение ИК-спектров асфальтенов и смол, 
а  также рассчитанных спектральных коэффи
циентов (рис. 3, табл. 4) позволило выявить опре-
деленные сходства и  различия в  их структурно-
групповом составе.

Асфальтены КОГГ по  сравнению с  асфаль-
тенами гудрона имеют более высокие значения 
коэффициентов ароматичности и  конденсиро-
ванности, но  меньшие значения коэффициен-
тов разветвленности и алифатичности. Для смол 
КОГГ можно наблюдать аналогичные изменения 
в спектральных коэффициентах, за исключением 
конденсированности, которая не меняется. В це-
лом анализ полученных данных по спектральным 
коэффициентам подтверждает известные резуль-
таты по изменению состава и структуры асфаль-
тенов в процессе гидрокрекинга, где в основном 
за счет отрыва боковых алкильных заместителей 
в асфальтенах увеличивается доля ароматических 
и  конденсированных структур. Особый интерес 
в  данном случае вызывает изменение структур-
ных характеристик смол, поскольку до  настоя-
щего времени для процесса гидрокрекинга из-
менения состава и  свойств этих компонентов 
целенаправленно не исследовались.

Методом термогравиметрического анализа 
(TГА) оценена термическая стабильность ас-
фальтенов и  смол в  интервале температур 30–
600°С (табл. 5, рис. 4).

Таблица 4. Спектральные коэффициенты, рассчитанные по данным ИК-спектроскопии

Образец Алифатичность
CH3 + CH2/С=С

Ароматичность
C=C/CH2

Разветвленность
CH3/CH2

Конденсированность
C=C/CH

Асфальтены

Гудрон 2,7 0,4 1,5 0,7

КОГГ 2,1 0,9 0,7 1,0

Смолы

Гудрон 3,2 0,3 1,7 0,9

КОГГ 2,3 0,6 0,9 0,9

Таблица 5. Данные ТГА для асфальтенов и смол, выде-
ленных из гудрона и КОГГ

Образцы
Температуры потери массы, °С Остаток при 

600°С, мас.%T5% T10% Тмакс

Асфальтены
Гудрон 405,5 433,5 463,2 49,75
КОГГ 370,8 414,7 452,7 67,87

Смолы
Гудрон 161,2 232,0 464,0 17,57
КОГГ 335,8 377,7 460,1 40,44
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Рис. 4. ТГ/ДТГ-кривые асфальтенов (а) и  смол (б), 
выделенных из гудрона и КОГГ (сплошные линии — 
ТГ-кривые, пунктирные линии — ДТГ-кривые).
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Температуры потери 5 и  10% массы для ас-
фальтенов значительно выше, чем для смол. При 
этом смолы КОГГ демонстрируют более высокие 
величины, в то время как асфальтены, наоборот, 
показывают немного меньшие значения. Макси-
мальная потеря массы для всех образцов проис-
ходит в достаточно узком диапазоне температур 
452,7–464,0°C (Тмакс), при которых за  счет про-
цессов термической деструкции и  конденсации 
в  итоге образуется остаток в  виде коксоподоб-
ного продукта. Для смол и асфальтенов из КОГГ 
выход остатка выше, чем для соответствующих 
компонентов из гудрона. Полученный результат 
подтверждает общую особенность структуры ас-
фальтенов и смол КОГГ, где меньше перифери-
ческих алкильных заместителей, связанных с по-
лиароматическими блоками термически менее 
устойчивыми вторичными С–С-связями.

Полученные результаты позволяют выявить 
ряд основных изменений в  составе и  структуре 
асфальтенов и  смол в  процессе комбинирован-
ного термо- и  гидрокрекинга в  суспензионной 
фазе. По аналогии с другими процессами гидро-
крекинга в асфальтенах происходит отрыв боко-
вых алкильных цепей, что приводит к образова-
нию разнообразных углеводородных радикалов. 
Кроме того, в  условиях локального недостатка 
водорода возникают условия для процессов по-
ликонденсации с  образованием вторичных ас-
фальтенов с  катаконденсированными полиаро-
матическими структурами, которые считаются 
предшественниками кокса [11]. Молекулярная 
масса остаточных асфальтенов уменьшается при 
удалении алкильных боковых цепей, что при-
водит к более узкому ММР. Полученные новые 
данные показали, что изменение ММР смол 
в  процессе комбинированного термо- и  гидро-
крекинга в суспензионной фазе имеет аналогич-
ную с  асфальтенами тенденцию. В  этом случае 
также не исключен вариант образования вторич-
ных смол за  счет конденсационных процессов 
из  би- и  трициклических ароматических ради-
калов. Ранее также сообщалось [29], что в оста-
точных фракциях после гидрокрекинга остаются 
определенные полиароматические структуры, 
которые не  могут быть конвертированы в  дис-
тилляты. Значительное снижение содержания 
ванадия и никеля в асфальтенах и смолах КОГГ 
в  сравнении с  гудроном позволяет утверждать, 
что основная масса соответствующих металло-
комплексов преобразуется в  условиях гидро-
крекинга. Комплексы ванадила демонстрируют 
более существенное снижение по  сравнению 

с  никелем, что может быть связано с  их пара-
магнетизмом и более высокой реакционной спо-
собностью в условиях гидрокрекинга [30].

ЗАКЛЮЧЕНИЕ

Проведено исследование состава и свойств ас-
фальтенов и смол остаточного продукта (КОГГ) 
процесса комбинированного термо- и гидрокре-
кинга гудрона в суспензионной фазе в сравнении 
с  асфальтенами и  смолами исходного гудрона. 
Технология отличается от других вариантов гид
рокрекинга наличием отдельного реакторного 
блока, работающего с  суспендированным сло-
ем добавки, адсорбирующей на  своей поверх-
ности асфальтены, смолы, гетероатомные ком-
поненты и  соединения металлов, что позволяет 
очистить сырье от  нежелательных компонентов 
и  на  следующей стадии использовать традици-
онный гидрокрекинг со  стационарным слоем 
катализатора для получения товарных топлив-
ных нефтепродуктов. В результате показано, что 
основные изменения асфальтенов и смол в дан-
ном случае происходят по  аналогии с  другими 
процессами гидрокрекинга. Изучение структуры 
асфальтенов и смол КОГГ методами масс-спек-
трометрии МАЛДИ, элементного анализа, ИК- 
и ЭПР-спектроскопии и ТГА показало, что они 
отличаются меньшими значениями молекуляр-
ной массы и большей долей конденсированных 
и  ароматических структур. Максимальное зна-
чение молекулярных масс Mmax снизилось с 1047 
до 609 а. е. для асфальтенов и с 735 до 453 а. е. для 
смол. Отношение Н/С снизилось с  1,10 до  0,85 
для асфальтенов и с 1,41 до 1,10 для смол после 
гидрокрекинга. Асфальтены КОГГ по  сравне-
нию с асфальтенами гудрона имеют более высо-
кую долю ароматических и  конденсированных 
структур с  пропорциональным уменьшением 
алифатичности, при этом для смол КОГГ можно 
наблюдать аналогичные изменения, за исключе-
нием конденсированности, которая не  меняет-
ся. По  содержанию ванадия и  никеля показано 
значительное снижение данного показателя в ас-
фальтенах и  смолах КОГГ по  сравнению с  со-
ответствующими компонентами гудрона, что 
связано с  адсорбцией металлокомплексов вана-
дила и  никеля на  поверхности добавки. Резуль-
таты исследования позволяют предположить, что 
в составе асфальтенов и смол КОГГ в основном 
присутствуют новообразованные за  счет поли-
конденсации компоненты, а также определенные 
полиароматические структуры, которые не могут 
быть конвертированы в дистилляты.
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