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Разработан быстрый и простой метод синтеза эффективных фотокатализаторов на основе диоксида 
титана и мезопористого цеолита MCM‑22 из различных прекурсоров титана. Полученные фотока-
тализаторы были проанализированы методами рентгенофазового анализа (РФА), низкотемпера-
турной адсорбции азота, растровой электронной микроскопии (РЭМ). Фотокаталитическая актив-
ность образцов TiO2-MCM‑22 была протестирована в реакциях фотокаталитического разложения 
красителя кристаллического фиолетового и окисления ацетона. Наибольшую фотокаталитическую 
активность продемонстрировал образец с соотношением TiO2-цеолит 1 : 1, полученный из тетрахло-
рида титана. Степень деградации кристаллического фиолетового составила 22% при УФ-облучении 
в течение 2 ч, а в реакции разложения ацетона активность составила 642 млн д. (выход CO2).
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В  настоящее время загрязнение окружающей 
среды привлекает все большее внимание исследо-
вателей. Органические и неорганические загряз-
нители, содержащиеся в воде и воздухе, такие как 
NOx, летучие органические соединения, красите-
ли текстильных производств, отходы фармацев-
тических фабрик и  другие, зачастую устойчивы 
и имеют опасную природу, что приводит к стой-
кому загрязнению окружающей среды [1–3]. Ди-
оксид титана привлек большое внимание иссле-
дователей благодаря стабильности, дешевизне 
и  высокой фотокаталитической активности [4, 
5]. Однако широкое применение TiO2, в  первую 
очередь при использовании в  виде суспензии, 
ограничено из-за ряда его недостатков: низкой ад-
сорбционной способности; склонности к агрега-
ции [1]. Поэтому многие исследователи в поисках 
повышения стабильности разрабатывают спосо-
бы нанесения наночастиц TiO2 на носитель [6, 7]. 

В  качестве носителей для наноразмерного диок-
сида титана использовали различные материалы 
с  высокой площадью удельной поверхности, на-
пример графен [8, 9], активированный уголь [10, 
11], различные материалы на  основе силикатов, 
оксидов кремния и алюминия природного и син-
тетического происхождения [12–14]. Носитель 
в данной конфигурации выступает в роли адсор-
бента для загрязняющих веществ, а также может 
препятствовать увеличению размеров кристал-
литов TiO2 на  его поверхности [15, 16]. Исполь-
зование цеолитов в качестве носителей имеет ряд 
своих преимуществ, например цеолиты обладают 
высокой площадью удельной поверхности, хи-
мической и  термической стабильностью [17–19]. 
Преимущественно исследованы следующие типы 
цеолитов FAU, MFI, MOR, BEA и HEU. Так было 
установлено, что фотокаталитическая активность 
композита TiO2-цеолит зависит от  соотноше
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ния  Si/Al в  цеолите, состояния поверхности, 
температуры прокаливания цеолита. Так, авто-
ры  [20] заявляют, что высокая гидрофобность 
цеолита может способствовать фотокаталитичес
кой активности катализатора TiO2-цеолит в  ре-
акциях разложения органических загрязнителей, 
в то время как цеолиты с низким соотношением 
Si/Al используют для удаления аммония и  тя-
желых металлов из-за их превосходной ионооб-
менной способности. Согласно литературным 
данным сведения о получении композитов нано-
размерного доксида на  цеолите MCM‑22 отсут-
ствуют, в то время как цеолит MCM‑22 обладает 
высокой площадью поверхности, а его морфоло-
гия в виде листов способна стабилизировать на-
ночастицы диоксида титана.

На основании анализа имеющихся литератур-
ных данных можно заключить, что разработка ме-
тода получения стабильных фотокатализаторов 
на основе диоксида титана и цеолита в качестве 
носителя перспективна. А  данные фотокатали-
заторы, согласно литературным данным, имеют 
потенциал применения в  реакции фотокатали-
тического восстановления углекислого газа, что 
также является насущной тематикой для научно-
го сообщества. Цель данной работы — разработ-
ка метода получения композитов TiO2-MCM‑22 
и  исследование фотокаталитических свойств 
данных материалов в зависимости от прекурсора 
титана в реакциях фотокаталитического окисле-
ния фиолетового кристаллического и ацетона.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В  качестве исходных соединений были ис-
пользованы гексаметиленимин (99%, Aldrich), 
диоксид кремния (Aerosil, Aldrich), алюминат на-
трия (56% Al2O3, 37% Na2O, Aldrich), гидроксид 
натрия (≥98%, Aldrich), TiCl4 (≥99,0%, Aldrich), 
Ti[OCH(CH3)2]4 (≥99,0%, Aldrich), 25% водный 
раствор аммиака (ч. д. а., ООО  ТД «Химмед») 
и дистиллированная вода.

Получение композита TiO2-MCM‑22

Исходный цеолит MCM‑22 получали по клас-
сической методике, описанной в  работе [21]: 
0,368  г NaA1O2, 0.240  г NaOH растворили 
в 49,680 г воды. К полученному раствору добавили 
3,044 г гексаметиленимина и 3,700 г SiO2 и 0,185 г 
цеолита MCM‑22 в качестве зародышей при ин-
тенсивном перемешивании в течение 30 мин. За-
тем образовавшийся гель помещали в  автоклав 

из нержавеющей стали с тефлоновым вкладышем 
и нагревали при 150°C со скоростью перемеши-
вания 300 об/мин в течение 120 ч. После быстро-
го охлаждения автоклава образовавшийся осадок 
отделяли центрифугированием, многократно 
промывали водой и  сушили при 80°C в  течение 
12  ч, после чего цеолит прокаливали при 550°C 
в течение 3 ч. Выход продукта составил 95%.

К 1 г прокаленного цеолита в виде суспензии 
в изопропаноле по каплям добавляли расчетное 
количество хлорида титана или изопропокси-
да титана до  образования густой массы с  одно-
родной консистенцией. Полученную массу не-
большими порциями вносили в 10 мл воды при 
интенсивном перемешивании, затем помещали 
в ванну со льдом и по каплям добавляли раствор 
аммиака (2,75 М) для получения однородного 
геля при pH 5, затем оставляли перемешиваться 
в  течение 3 ч. Образовавшийся осадок отделя-
ли центрифугированием, многократно промы-
вали водой и  высушивали. Выход продукта со-
ставил 91–93% в  зависимости от  соотношения 
SiO2 : TiO2.

Рентгенофазовый анализ (РФА) образцов 
проводили на дифрактометре Bruker D8 Advance 
в диапазоне 2θ 10–80° с шагом 0,02° и выдержкой 
не менее 0,5 с на шаг. Расчет величины ОКР про-
водили по формуле Шеррера:

	 D
K

hkl
hkl

= ×
( ) × ( )

λ
β θ θ2 0cos

, 	 (1)

где θ0 — положение максимума пика, λ — дли-
на волны рентгеновского излучения CuKα1 
(0,154056  нм), βhkl(2θ) — истинное физическое 
уширение дифракционного максимума. Значе-
ние фактора формы (K) принимали равным 1.

Исследование морфологии и  соотношения 
цеолит–диоксид титана полученных образцов 
проводили методом растровой электронной ми-
кроскопии (РЭМ) с  использованием электрон-
ного микроскопа Carl Zeiss NVision 40 (Герма-
ния), оснащенном анализатором X-Max Oxford 
Instruments (80 мм2).

Площадь удельной поверхности образцов 
определяли методом низкотемпературной адсор-
бции азота с использованием прибора ASAP 2020 
(Micromeritics, США). Перед анализом образцы 
вакуумировали 2 ч при 250°C. Удельная поверх-
ность рассчитана по  БЭТ при относительном 
парциальном давлении Р/Р0 = 0,2.
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Рентеновскую фотоэлектронную спектроско-
пию (РФЭС) образцов проводили на спектроме-
тре PREVAC EA15 (PREVAC sp. z o. o., Польша), 
оснащенном полусферическим анализатором 
высокого разрешения. В  качестве источника 
излучения было выбрано излучение AlKα (hν  = 
= 1486,6 эВ, 150 Вт). Давление остаточных газов 
в  ходе измерения не  превышало 5 × 10–9 мбар. 
Эффект зарядки учитывали, используя в  каче-
стве внутреннего стандарта положение линии 
C1s (Есв = 284,8 эВ) атомов углерода.

Для определения фотокаталитической ак-
тивности (ФКА) полученных образцов диокси-
да титана были использованы модельная реак-
ция фотодеградации органического красителя 
кристаллического фиолетового в  водной среде 
по  стандартной методике [4, 22] с  использова-
нием спектрофотометра Ocean Optics QE65000 
(США) и  дейтерий-галогеновой лампы Ocean 
Optics HPX‑2000 и реакция фотоокислению аце-
тона в  газовой камере [23], снабженной источ-
ником с 12 УФ-светодиодами (общая мощность 
36 Вт), с максимумом излучения на длине волны 
365 нм. Концентрацию ацетона и  CO2 в  возду-
хе в  процессе фотокаталитического окисления 
определяли по интегрированию характеристиче-
ских полос соединений в ИК-спектрах в ходе фо-
токаталитической реакции. Для ацетона в преде-
лах 1165–1256 см–1, для CO2 – 2281–2399 см–1. Для 
снижения влияния атмосферного СО2 ИК-спек-
трометр был помещен в герметичный бокс. Эф-
фективность фотокаталитического окисления 
(Ф) рассчитывали по следующей формуле:

Φ моль мин Вт
CO− − υ1 1 2( ) ×

=
C

P
,

где CCO2
 — максимальная концентрация образую-

щегося CO2, υ — скорость потока газа, P — мощ-
ность излучения.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Цеолит, полученный в  результате гидротер-
мального синтеза, представляет собой однофаз-
ный образец без примеси аморфной фазы, что 
демонстрирует дифрактограмма, приведенная 
на рис. 1. По данным электронной микроскопии 
(рис.  2) полученный образец цеолита MCM‑22 
по морфологии похож на глобулы из пластинча-
тых частиц.

На рис. 1 приведены дифрактограммы образ-
цов композитов MCM‑22/TiO2 (9 : 1), MCM‑22/

TiO2 (3 : 1), MCM‑22/TiO2 (1 : 1). Так по мере ро-
ста концентрации диоксида титана в  композите 
наблюдается увеличение интенсивности рефлек-
сов анатаза. Для образцов MCM‑22/TiO2 (3 : 1) 
и MCM‑22/TiO2 (1 : 1) по рефлексу (101) удалось 
оценить размер кристаллитов по формуле Шер-
рера (табл. 1). Для образца MCM‑22/TiO2 (9 : 1) 
данный размер посчитать не представляется воз-
можным из-за малого количества диоксида тита-
на в композите и присутствия на дифрактограм-
ме интенсивных рефлексов цеолита. По данным 
низкотемпературной адсорбции азота с  ростом 
концентрации диоксида титана наблюдается 
уменьшение площади удельной поверхности 
(табл. 1).
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Рис.  1. Дифрактограммы образцов фотокатализа-
торов MCM‑22/TiO2 с  различным соотношением 
MCM‑22 : TiO2, полученные с  применением тетра
хлорида титана.

1 мкм

Рис.  2. РЭМ-изображения синтезированного цеолита 
MCM‑22.
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На  рис.  3а–г показаны изображения растро-
вой электронной микроскопии фотокатализа-
торов, полученных по  разработанной методи-
ке из  хлорида титана и  изопропоксида титана. 
На изображениях можно заметить, что при соот-
ношении цеолит : TiO2 = 9 : 1 отсутствуют агрега-
ты диоксида титана, в то время как с увеличени-
ем соотношения заметно возрастает количество 
агрегатов наночастиц на  поверхности цеолита. 
При использовании в качестве источника диок-
сида титана изопропоксида титана наблюдается 

слипание пластин цеолита MCM‑22. Для опре-
деления элементного состава и состояния атомов 
в материалах были проведены ретгеноспектраль-
ный микроанализ и  анализ методом рентгенов-
ской фотоэлектронной спектроскопии (РФЭС).

В  табл.  1 приведены значения соотноше-
ние SiO2/TiO2, полученные с  помощью метода 
РСМА. В  случае образца MCM‑22/TiO2 (1  :  1) 
было обнаружено что фактическое соотношение 
цеолита к диоксиду титана выше теоретического, 

Таблица 1. Физико-химические характеристики и фотокаталитические свойства образцов TiO2-MCM‑22.

Образец SBET, м2/г ОКР частиц 
TiO2, нм*

SiO2/TiO2,  
мас. соотн.** ФКА, %/мин CCO2

, млн д. Ф, моль∙
мин–1 Вт–1

MCM‑22 490 – – – – –

MCM‑22/TiO2 (9 : 1) 
TiCl4

410 – 10,2 0,018 71 1,18 × 10–5

MCM‑22/TiO2 (3 : 1) 
TiCl4

342 19 3,7 0,051 204 3,39 × 10–5

MCM‑22/TiO2 (1 : 1)
TiCl4

251 17 1,5 0,167 642 1,07 × 10–4

MCM‑22/TiO2 (1 : 1) 
TTIP 215 20 1,7 0,091 402 6,70 × 10–4

* Определено с помощью формулы Шеррера.
** По данным рентгеноспектрального микроанализа.

200 нм

(а) (б)

(в) (г)

200 нм

200 нм

200 нм

Рис.  3. РЭМ-изображения образцов катализаторов: (а) MCM‑22/TiO2 (9 : 1), (б) MCM‑22/TiO2 (3 : 1),  
(в) MCM‑22/TiO2 (1 : 1) из тетрахлорида титана, (г) MCM‑22/TiO2 (1 : 1) из изопропоксида титана при увеличении 
100000 x.
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что может быть связано с вымыванием слабосвя-
занного диоксида титана при промывке осадка 
в  процессе синтеза. Для аналогичного образца 
из  тетраизопропоксида титана данный эффект 
также наблюдался, и  значение полученного со-
отношения больше чем для образца композита 
из  тетрахлорида титана. Методом РФЭС было 
установлено, что атомы кремния находятся в со-
стоянии +4, атомы титана в состоянии +4, алю-
миния в  состоянии +3, а  кислород находится 
в трех состояниях (O–Ti – энергия связи 529,6 эВ, 
O–Si – энергия связи 532,5 эВ и H2Oадс – энергия 
связи 533,6 эВ) (рис. 4).

Образцы композитных фотокатализаторов 
были исследованы в  реакции разложения кри-
сталлического фиолетового при УФ-облучении 
(табл.  1). Можно заметить, что с  увеличением 

диоксида титана в  композите наблюдается уве-
личение ФКА (рис. 5а), в то время как площадь 
удельной поверхности снижается, что обуслов-
лено большей площадью удельной поверхно-
сти исходного цеолита в сравнении с площадью 
удельной поверхности образуемого на  поверх-
ности диоксида титана. В  газофазной реакции 
фотоокисления ацетона наблюдается аналогич-
ная зависимость, а именно, рост фотокаталити-
ческой активности с  увеличением содержания 
диоксида титана вследствие увеличения погло-
щения света и  генерации электрон-дырочных 
пар. Так концентрация получаемого углекисло-
го газа составляет от 642 млн долей для образца  
MCM‑22/TiO2 (1 : 1) до 71 млн долей для образ-
ца MCM‑22/TiO2 (9 : 1) (рис. 5б). На основании 
этого можно заключить, что на  ФКА в  данных 
реакциях в  первую очередь влияет количество 
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Рис. 4. РФЭ-спектры O1s, Si2p, Al2p образца MCM‑22/TiO2 (3 : 1).

Рис.  5. Сравнение скоростей фотокаталитического разложения красителя кристаллического фиолетового в  при-
сутствии различных образцов диоксида титана при УФ-облучении: (а) скорость фотокаталитического разложения 
красителя кристаллического фиолетового в присутствии различных образцов диоксида титана; (б) зависимость кон-
центрации образуемого СО2 в реакции фотокаталитического разложения ацетона при УФ-облучении различных ис-
следуемых фотокатализаторов; (в) эффективность фотокаталитического окисления ацетона при УФ-облучении.
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диоксида титана, нежели общая площадь удель-
ной поверхности композита, что согласуется 
с  литературными данными [18–19]. Для выбора 
источника диоксида титана в  реакции разложе-
ния кристаллического фиолетового были иссле-
дованы образцы MCM‑22/TiO2 (1 : 1) из хлорида 
и изопропоксида титана. ФКА образца из хлори-
да титана существенно выше (0,167%/мин против 
0,091%/мин).

ЗАКЛЮЧЕНИЕ

В  ходе работы была разработана новая ме-
тодика получения и  впервые были получе-
ны гибридные фотокатализаторы состава  
TiO2-MCM‑22. В качестве исходных соединений 
для нанесения диоксида титана были выбраны 
тетраизопропоксид титана(IV) и  тетрахлорид 
титана, исследованы их физико-химические 
и  фотокаталитические свойства. Установлено, 
что большей фотокаталитической активно-
стью в реакции УФ-разложения красителя кри-
сталлического фиолетового обладает образец 
MCM‑22/TiO2 (1 : 1) (0,167%/мин), а  в  реак-
ции разложения ацетона активность составила 
642  млн д. (выход CO2), полученный с  приме-
нением в  качестве источника диоксида титана 
тетрахлорида титана.
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