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В  контексте глобального перехода к  устой-
чивым источникам энергии и  снижения зави-
симости от  ископаемого топлива, переработка 
возобновляемого сырья растительного проис-
хождения, в частности отходов сельского и лес-
ного хозяйства на  основе лигниноцеллюлозной 
биомассы, представляет собой перспективное на-
правление для производства биотоплива и цен-
ных химических продуктов. Один из возможных 
способов переработки лигниноцеллюлозного 
сырья — процесс быстрого пиролиза, в  резуль-
тате которого образуется ценный продукт — 
бионефть — сложная смесь органических со-
единений, содержащая кислородсодержащие 
производные фенолов, фуранов, альдегидов, 
крезолов, карбоновых кислот, кетонов, спиртов 
и т. д. Высокое содержание кислорода в бионефти 
ограничивает ее практическое применение из-за 
низкой теплотворной способности, коррозион
ной активности и  нестабильности в  условиях 
хранения и транспортировки [1]. В связи с этим, 
ключевым этапом переработки такого сырья яв-

ляется гидрооблагораживание, в частности про-
цесс гидродеоксигенации. В литературе описано 
множество катализаторов гидродеоксигенации 
на основе переходных металлов: Pd, Pt, Ru, Rh, 
Ni, Co, Fe, Mo, Cu, биметаллические Pt–Pd, Pt–
Rh, Pd–Rh, Ni–Co, Ni–Cu, Co–Zn и  др. [2–5]. 
Катализаторы на  основе благородных металлов 
проявляют высокую активность в  гидрооблаго
раживании компонентов бионефти. Такие ката
лизаторы не требуют высоких температур прове-
дения процесса и большого содержания металла 
на  подложке, а  также проявляют высокую ста-
бильность. Однако для катализаторов на  осно-
ве благородных металлов, как правило, необхо-
димы кислотные носители или кислые добавки 
в систему для эффективной деоксигенации ком-
понентов бионефти [6, 7]. В связи с этим особый 
интерес представляют бифункциональные ката-
лизаторы, способные одновременно обеспечи-
вать как гидрирующую активность, так и кислот-
ные свойства, необходимые для эффективной 
деоксигенации компонентов бионефти. К таким 
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материалам относят фосфиды переходных метал-
лов, в частности фосфиды никеля, обладающие 
активностью в гидрировании компонентов био-
нефти на  льюисовских (Niδ+) и  бренстедовских 
(PO–H) кислотных центрах (КЦ), участвующих 
в гидрогенолизе C–O-связей [8]. С точки зрения 
выбора носителя катализатора, пористые поли-
мерные и  углеродные материалы представляют 
собой современные альтернативы традицион-
ным неорганическим носителям, обладая рядом 
существенных преимуществ. Такие материалы 
демонстрируют высокую химическую стабиль-
ность в  условиях кислотно-агрессивных сред, 
свойственных для переработки бионефти, харак-
теризуются лучшей сорбцией компонентов био-
нефти за счет гидрофобной природы, легкостью 
модификации для оптимизации каталитических 
свойств [9, 10].

Цель работы — синтез катализатора на основе 
наночастиц фосфида никеля, иммобилизован-
ных в порах мезопористого резорцинформальде-
гидного полимера, и его испытание в гидрирова-
нии модельных соединений бионефти — гваякола 
и фурфурола.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В  работе использованы: триблок-сополимер 
плюроник F127 (Mn  = 12600, EO106-PO70-EO106, 
кат. номер 9003-11-6, Sigma-Aldrich); резорцин 
(ч., ООО «Химмед»); формальдегид (37%-ный во-
дный раствор, кат. номер 50-00-0, Sigma-Aldrich); 
HCl (х.ч., ООО  «Иреа 2000»); фурфурол (99%, 
кат. номер 98-01-1, Sigma-Aldrich); этанол (ч. д. а., 
ООО  «Иреа 2000»); NiCl2·6H2O (ч., ООО  «Реа-
хим»); H3PO2 (50%-ный водный раствор, кат. но-
мер 6303-21-5, Sigma-Aldrich), гваякол (98%, кат. 
номер 90-05-1, Sigma-Aldrich). Фурфурол перед 
использованием в  каталитических эксперимен-
тах перегоняли при 10 мм рт. ст. с отбором фрак-
ции, кипящей при 50–52°C.

Анализ мезопористого наносферического по-
лимера и нанесенного никельфосфидного ката-
лизатора методом просвечивающей электронной 
микроскопии был выполнен при помощи микро-
скопа JEM‑2100 (Jeol, США) (увеличение от  50 
до  1500000, разрешение изображения 0,19  нм 
при 200 кВ) с приставкой энергодисперсионного 
микроанализатора JED‑2300F (Jeol). Обработку 
микрофотографий и расчет среднего размера ча-
стиц производили с помощью программы Image 
Pro Plus.

Изотермы адсорбции/десорбции азота были 
получены при T = 77 K с  помощью анализато-
ра поверхности Gemini VII 2390 (Micromeritics). 
Перед анализом образцы были дегазированы 
в  вакууме с  помощью дегазатора VacPrep™ 061 
(Micromeritics, США) при температуре 120°C в те-
чение 12 ч. Для расчета площади поверхности был 
использован метод Брунауэра–Эммета–Теллера 
с  использованием адсорбционных данных в  диа-
пазоне относительных давлений (Р/Р0) 0,04–0,2. 
Объем пор и распределение пор по размерам были 
определены исходя из данных, относящихся к ад-
сорбционной ветви изотерм, с  использованием 
модели Баррета–Джойнера–Халенды.

Фазовый состав катализатора определя-
ли методом рентгенофазового анализа (РФА) 
на  приборе Rigaku Rotaflex D/max-RC (Rigaku, 
Япония). Дифрактограмму регистрировали в уг
ловом диапазоне 2θ = 10°–100° с использовани-
ем Kα-излучения (λ = 1,54 Å) медного анода. Раз-
мер кристаллитов d рассчитывали по уравнению 
Дебая–Шеррера:

d
K

= � λ
β θcos

,

где λ (1,54 Å) — длина волны излучения, K (0/9) — 
постоянная Шеррера, θ — угол дифракции, β — 
ширина сигнала на полувысоте рефлекса.

Общее количество кислотных центров носи-
теля и катализатора определяли методом термо
программируемой десорбции аммиака (ТПД 
NH3) на  прецизионном хемосорбционном ана-
лизаторе с  детектором по  теплопроводности 
Autosorb IQ (Quantachrome, США). Перед ана-
лизом образцы нагревали в  токе гелия (мар-
ка А,  ООО  «ПГС-СЕРВИС ЛОГИСТИКА») 
до  450°C, выдерживали при этой температуре 
60 мин. ТПД NH3 (марка А, АО «Тольяттиазот», 
Россия) проводили в  температурной области 
50–400°C со  скоростью нагрева измерительной 
ячейки 20°C/мин. Обработку спектров произ-
водили с  использованием программного пакета 
TPRWin software for ASiQ.

Количественный анализ содержания металла 
в  катализаторе осуществляли методом атомно-
эмиссионной спектроскопии с  индуктивно-
связанной плазмой (АЭС-ИСП) на приборе IRIS 
Interpid II XDL (Thermo Electron Corp., США) 
с  радиальным и  аксиальным наблюдением при 
длине волны 221,6 нм.
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Исследования методом рентгенофотоэлект
ронной спектроскопии (РФЭС) проводили при 
помощи рентгеновского фотоэлектронного 
спектрометра PHI 5000 Versaprobe-II (Physical 
Electronics, США). Для возбуждения фотоэлек-
тронов использовано рентгеновское излучение 
алюминиевого анода (AlKα = 1486,6 эВ). Шкалу 
энергии связи корректировали по линии C1s аро-
матического углерода (Есв = 284,7 эВ). Обзорные 
спектры регистрировали в диапазоне 0–1100 эВ 
при энергии пропускания анализатора (Epass) 
117,4 эВ с шагом 1 эВ/шаг, спектры высокого раз-
решения — при Epass = 23,5 эВ с шагом 0,2 эВ/шаг.

Идентификацию продуктов проводили на газо-
хромато-масс-спектрометре Finnigan MAT 95 XL 
(Finnigan, США), оборудованном хроматогра-
фом с  капиллярной колонкой Varian VF‑5MS 
(30 м × 0,25 мм × 0,25 мкм), газ-носитель — гелий 
(1,5 см3 мин–1). Для анализа субстратов и продук-
тов реакции гидрирования был использован га-
зовый хроматограф Кристаллюкс‑4000М (ООО 
«Мета-Хром») с  пламенно-ионизационным де-
тектором, капиллярной колонкой СP-Wax 52 CB 
с  неподвижной жидкой фазой полиэтиленгли-
коль (размеры: 25 м × 0,25 мм). Условия анали-
за: температура колонки 220°C, температура де-
тектора 300°C, температура инжектора 300°C, 
газ-носитель гелий. Хроматограммы анализиро-
вали с  использованием программы NetChrom. 
Конверсию определяли по изменению площадей 
хроматографических пиков, относящихся к суб-
страту и  продуктам. Селективность определяли 
как отношение количества целевого продукта 
к количеству прореагировавшего субстрата.

Наносферический мезопористый полимер 
NSMR (nanospherical mesoporous resin) получа-
ли по  методике [11]; отжиг темплата проводили 
при температуре 360°C для сохранения структу-
ры полимера. Синтез катализатора NSMR-Ni2P 
проводили in situ в  процессе синтеза носителя 
NSMR: на стадии растворения резорцина и плю-
роника F127 в  реакционную смесь добавляли 
710  мг NiCl2·6H2O и  690 мкл 50%-водного рас-
твора H3PO2, далее синтез материала проводили 
по указанной выше методике.

Каталитические эксперименты по  гидрирова
нию гваякола/фурфурола осуществляли в  сталь
ном термостатируемом автоклаве объемом 45 мл.  
В  автоклав помещали рассчитанное количество 
субстрата, растертого в  порошок катализато-
ра и  растворителя, и  якорь магнитной мешал-

ки. Автоклав герметично закрывали, заполняли 
водородом (марка А,  АО  «МГПЗ») до  давления 
4,0  МПа и  выдерживали при заданной темпера-
туре и перемешивании со скоростью 1000 об/мин 
в течение 4 ч. По окончании реакции автоклав ох-
лаждали и разгерметизировали, катализатор отде-
ляли центрифугированием. Пробу анализировали 
методом газожидкостной хроматографии.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Мезопористый резорцинформальдегидный 
полимер NSMR был охарактеризован методами 
просвечивающей электронной микроскопии 
и  низкотемпературной адсорбции–десорбции 
азота. На  микрофотографии полимера NSMR 
(рис.  1а) присутствуют мезопористые сфериче-
ские частицы с диаметром 120–360 нм (рис. 1б); 
средний диаметр частиц составляет 200 ± 10 нм.

Изотерма адсорбции полимера NSMR (рис. 2) 
характеризуется II и  IV типом, свойственным 
макро- и  мезопористым материалам соответ-
ственно. Удельная площадь поверхности, объем 
и размер пор полимерного материала NSMR со-
ставляли 187 м2/г, 0,12 см3/г, 3,7 нм соответствен-
но.

На  основе полученного материала NSMR 
был синтезирован никельфосфидный катализа-
тор NSMR–Ni2P методом разложения гипофос-
фита никеля in situ в  процессе отжига темплата 
в  пропитанном гипофосфитом никеля полиме-
ре NSMR. Содержание никеля в  катализаторе 
NSMR–Ni2P, определенное методом АЭС-ИСП, 
составило 8,6 мас.%. На дифрактограмме (рис. 3) 
катализатора NSMR–Ni2P присутствуют харак-
терные рефлексы при углах Брэгга 40,6°, 44,5°, 
47,2° и 54,0°, соответствующие плоскостям (111), 
(201), (210) и (300) гексагональной решетки фос-
фида никеля состава Ni2P. Размер кристаллитов 
фосфидов никеля Ni2P, рассчитанный по форму-
ле Шеррера, составил 30 нм.

На микрофотографиях катализатора NSMR–
Ni2P (рис.  4) наблюдаются наночастицы Ni2P 
двух типов: частицы со средним размером 3,8 нм, 
закрепленные внутри пор наносферического но-
сителя NSMR, и более крупные агрегаты разме-
ром 20–50 нм, локализованные на внешней по-
верхности полимерного материала.

Для оценки кислотных свойств катализатора 
образцы NSMR и  NSMR–Ni2P были исследо-
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ваны методом ТПД-NH3. На  кривой ТПД-NH3 
носителя NSMR сигналы десорбции NH3 не де-
тектируются, что свидетельствует о том, что ме-
зопористый наносферический полимер NSMR 
не  содержит значительного количества КЦ. 
Количество же КЦ в случае катализатора NSMR-
Ni2P составило 51 мкмоль/г, что свидетельству-
ет о  значительном вкладе активной фазы Ni2P 
в  формирование кислотных свойств материала. 
Профиль ТПД-NH3 катализатора NSMR–Ni2P 
характеризуется максимумом пика десорбции 
NH3 области 150–160°C, что указывает на  при-
сутствие слабых КЦ (рис. 5). Слабые КЦ в фос-
фидах преимущественно относят к  бренстедов-
ским КЦ P–OH [12–14].

Для определения валентных состояний ком-
понентов поверхности катализатора образец 
NSMR–Ni2P был исследован методом РФЭС. 
Согласно данным РФЭС, общее содержание эле
ментов в катализаторе распределено следующим 
образом: 51,8 ат.% С, 28,7 ат.% O, 11,0  ат.% Ni, 
8,5  ат.% P. На  спектре области Ni2p3/2 (рис.  6а) 
присутствуют сигналы при энергии связи: 
852,8  эВ, характерный для частично восстанов-
ленного состояния никеля Niδ+ в структуре фос-
фида [15, 16], 856,3 эВ, относящийся к окислен-
ным формам никеля Ni2+. На  спектре области 
P2p3/2 (рис. 6б) присутствуют сигналы при энер-
гии связи 133,2 и 128,2 эВ, относящиеся к состо-
яниям фосфора P5+ и  Pδ– соответственно  [17]. 
Несмотря на  высокое содержание окисленных 
форм никеля и  фосфора на  поверхности ката-
лизатора, наличие сигналов Niδ+ при 852,8 эВ  
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и Pδ– при 128,9 эВ подтверждает формирование 
фосфидной фазы Ni2P в  NSMR–Ni2P. Преоб-
ладание окисленных форм фосфора и  никеля 
на  поверхности NSMR–Ni2P может быть свя-
зано с  частичным окислением фосфида никеля 
кислородом воздуха во время синтеза и хранения 
катализатора [18].

Поверхностное атомное соотношение  
Ni/P = 1,3 для исследуемого катализатора превы-
шает теоретическое значение Ni/P = 0,5, харак-
терное для стехиометрического фосфида никеля 
Ni2P. Данное наблюдение может быть связано 
с частичной потерей фосфора в виде газообраз-
ного PH3 на  стадии термического разложения 
предшественника — гипофосфита никеля в про-
цессе синтеза катализатора [19].

Никельфосфидный катализатор NSMR–Ni2P 
был применен в  гидрировании модельных ком-

Рис. 6. Деконволюции Ni2p (а) и P2p (б) рентгеновских фотоэлектронных спектров никельфосфидного катализатора.
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понентов бионефти — фурфурола и  гваякола. 
В его присутствии было исследовано влияние та-
ких параметров, как температура реакции, дав-
ление водорода, масса катализатора и продолжи-
тельности процесса гидрирования.

Для фурфурола. Показано, что с увеличением 
температуры от 170 до 250°C конверсия фурфуро-
ла существенно возрастала; при этом наблюдал-
ся значительный рост селективности образова-
ния 2-метилфурана, что указывает на ускорение 
процессов деоксигенации в  реакционной смеси 
(рис. 7а). При повышении температуры процесса 
селективности продуктов гидрирования фурано-
вого кольца оставались относительно низкими. 
Параллельно с  этим доля продуктов конденса-
ции возрастала при увеличении температуры 
процесса от 170 до 250°C, что указывает на уси-
ление реакций полимеризации фурфурола и его 
продуктов гидрирования.

Показано, что конверсия и  распределение 
продуктов гидрирования фурфурола сущест
венно зависят от  давления водорода в  системе 
(рис. 7б). Так, при давлении водорода до 3 МПа 
конверсия не  превышала 10%; с  ростом давле-
ния водорода в  реакционной смеси (4–6 МПа) 
происходило заметное усиление процессов гид
рирования фуранового кольца, что проявля-
лось в увеличении выходов таких продуктов, как 
2-метилтетрагидрофуран и тетрагидрофурфури-
ловый спирт.

При низких загрузках катализатора конвер-
сия фурфурола составляла 7,7%. С увеличением 
массы катализатора конверсия фурфурола воз-
растала до  87,8%, селективность образования 
2-метилфурана возрастала при снижении ко-
личества образующегося фурфурилового спир-
та, в  то  время как селективности образования  
2-метилтетрагидрофурана и  тетрагидрофурфу
рилового спирта изменялись незначительно 
(рис. 7в). То есть увеличение загрузки катализа-
тора приводило к  более активному протеканию 
процессов гидродеоксигенации по  сравнению 
с  гидрированием фуранового кольца. То,  что 
доля продуктов конденсации возрастала с увели-
чением массы катализатора, может быть обуслов-
лено повышением кислотности системы за счет 
добавления большего количества катализатора.

В  ходе исследования процесса гидрирования 
фурфурола от продолжительности реакции были 
выявлены временные закономерности измене-

ния селективностей продуктов. На  начальных 
стадиях (2 ч) в продуктах реакции присутствова-
ло высокое содержание фурфурилового спирта, 
что указывает на  преимущественное протека-
ние реакции гидрирования альдегидной группы 
с последующей гидродеоксигенации до 2-метил
фурана (рис.  7г). После 4 ч протекания реак-
ции происходило снижение селективности об-
разования фурфурилового спирта при росте 
селективности по 2-метилфурану, что указывает 
на  преобладание процессов гидродеоксигена-
ции. Селективность образования 2-метилтетра
гидрофурана и тетрагидрофурфурилового спир-
та оставалась практически неизменной, что 
указывает на отсутствие существенного протека-
ния реакций гидрирования фуранового кольца. 
При дальнейшем проведении процесса селек-
тивность образования 2-метилфурана уменьша-
лась при увеличении селективности образования 
продуктов гидрирования фуранового кольца. 
Также в  реакционной смеси растет доля про-
дуктов конденсации, постепенно образующихся 
на кислотных центрах.

Для гваякола. Согласно литературным дан-
ным, для достижения количественного превра-
щения фенольных соединений в  присутствии 
фосфидных катализаторов требуются повышен-
ные температуры процесса гидрирования [20–
22]. Однако в  исследуемом катализаторе фос-
фид никеля Ni2P иммобилизован в полимерной 
матрице, что накладывает дополнительные ог
раничения на  условия проведения реакции. 
В  частности, жесткие условия гидрирования 
гваякола, а  именно повышенная температура 
и длительность термического воздействия, мо-
гут оказывать значительное влияние на актив-
ность катализатора на  основе полимера из-за 
возможной деградации структуры полимера. 
Учитывая это, представляло особый интерес 
исследовать влияние температуры и продолжи-
тельности процесса на активность полученного 
материала.

Таблица 1. Параметры аппроксимации рентгеновских 
фотоэлектронных спектров

Параметры
Ni2p3/2 P2p3/2

Ni2+ Niδ+ P5+ Pδ–

Eсв, эВ 856,3 852,8 133,2 128,9

Содержание, % 77 23 58 42
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При проведении реакции при 410 и  430°C 
превращение гваякола протекало количествен-
но, однако в  продуктах реакции детектирова-
лось большое количество крезолов, диметилфе-
нолов и бензола. При повышении температуры 
реакции помимо увеличения выходов по диме-
тилфенолам, крезолам и  бензолу наблюдалось 
снижение выходов продуктов гидрирования 
ароматического кольца (метилциклопента-
на, циклогексана, метилциклогексана, цикло
гексена).

При малых временах реакции в  продуктах 
детектировали циклогексанон, однако при этом 
в реакционной смеси не было циклогексанола, 
что, вероятно, связано с  его быстрой дегидра-
тацией до  циклогексена. Также необходимо 
отметить, что в промежутке от 3 до 12 ч селек-
тивность по бензолу не изменялась, в то время 
как выход по циклогексану возрастал и снизи-
лось количество фенола и пирокатехина в реак-
ционной смеси. Это позволяет предположить, 

что превращение фенола до циклогексана и ме-
тилциклопентана может идти не  только через 
деоксигенацию фенола с  последующим гид
рированием бензола, но и через гидрирование 
фенола с последующими деоксигенацией и гид
рированием образовавшегося циклогексанола. 
Помимо гидродеоксигенации и  гидрирования 
ароматических соединений происходят про-
цессы метилирования, так, с течением времени 
в  смеси растет содержание крезолов: если при 
3-часовой реакции селективность по крезолам 
составляла 4%, то  при 12 ч — уже 12%. В  про-
дуктах реакции также детектировали метилци-
клопентан, который, вероятно, образуется изо-
меризацией циклогексена.

В  ходе исследования была оценена возмож-
ность совместного гидрирования гваякола 
и фурфурола в присутствии никельфосфидного 
катализатора NSMR-Ni2P. При введении гвая-
кола в реакционную смесь в условиях гидриро-
вания фурфурола (23,5  мг катализатора, 250°C, 
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Рис. 7. Конверсия фурфурола и селективности образования продуктов его гидрирования в присутствии никельфос-
фидного катализатора в зависимости от: (а) — температуры; (б) — давления водорода; (в) — загрузки катализатора; 
(г) — продолжительности процесса гидрирования.
*Условия реакции: 50 мкл фурфурола, 2 мл толуола, далее для: (а) — 11 мг катализатора, 4 MПa Н2, 4 ч; (б) — 11 мг ката-
лизатора, 200°C, 4 ч; (в) — 4 MПa Н2, 200°C, 4 ч; (г) — 4 MПa Н2, 200°C, 11 мг катализатора.
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4 ч, 4 МПа Н2, 50 мкл фурфурола и 50 мкл гвая-
кола) наблюдалось значительное снижение кон-
версии фурфурола, тогда как степень превраще-
ния гваякола не превышала 1%.

При проведении гидрирования смеси при бо-
лее высокой температуре (23,5 мг катализатора, 
370°C, 9 ч, 4 МПа Н2, 50 мкл фурфурола и 50 мкл 
гваякола), обеспечивающей количественное 
превращение гваякола, в  продуктах гидрирова-
ния фурфурола было обнаружено значительное 
количество продуктов конденсации и смол; при 
этом конверсия гваякола уменьшилась при-
мерно в  два раза. Таким образом, совместное 
гидрирование смесей фурфурола и  гваякола 
в  присутствии полученного никельфосфидного 
катализатора является нецелесообразным. Это 
указывает на необходимость рассмотрения мно-
гостадийных процессов гидрирования для оп-
тимизации условий переработки каждого ком
понента.

ВЫВОДЫ

Показано, что полученный никельфосфид-
ный катализатор на  основе мезопористого ре-
зорцинформальдегидного полимера NSMR–
Ni2P активен в  процессах гидродеоксигенации 
фурфурола и  гваякола. Катализатор характери-
зуется высокой селективностью в  превращении 
модельных соединений бионефти: фурфурола — 
в 2-метилфуран, гваякола — в бензол.
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