Методом нанесения рутенийсилоксанового олигомера на поверхность наноразмерного оксида титана(IV) получены Ru-содержащие катализаторы. Физико-химические свойства катализаторов исследованы методами рентгеновской фотоэлектронной спектроскопии (РФЭС), рентгенофазового анализа (РФА), растровой (РЭМ) и просвечивающей электронной микроскопии (ПЭМ), методом низкотемпературной адсорбции азота, термопрограммируемого восстановления водородом (ТПВ-H₂). Катализаторы испытаны в реакции гидрирования гваякола в додекане при температурах 150–250 °C и давлении водорода 5 МПа. Показано, что катализатор, полученный из рутенийсилоксана, обладает более высокой активностью в гидрировании гваякола по сравнению с аналогом, полученным из хлорида рутения.
Разработан быстрый и простой метод синтеза эффективных фотокатализаторов на основе диоксида титана и мезопористого цеолита MCM-22 из различных прекурсоров титана. Полученные фотокатализаторы были проанализиованы методами рентгенофазового анализа (РФА), низкотемпературной адсорбции азота, растровой электронной микроскопии (РЭМ). Фотокаталитическая активность образцов TiO2-MCM-22 была протестирована в реакциях фотокаталитического разложения красителя кристаллического фиолетового и окисления ацетона. Наибольшую фотокаталитическую активность продемонстрировал образец с соотношением TiO2‑цеолит 1:1, полученный из тетрахлорида титана. Степень деградации кристаллического фиолетового составила 22% при УФ облучении в течение 2 ч, а в реакции разложения ацетона активность составила 642 млн. д. (выход CO2).
Проведены эксперименты по пассивации никеля борсодержащей добавкой в процессе каталитического крекинга гидроочищенного вакуумного газойля на пилотной установке. Установлено, что при введении маслорастворимой добавки в установку совместно с углеводородным сырьем и достижении содержания бора 1970 ppm (соотношение В/Ni ≈ 2,0 : 3,5 г/г) на отравленном никелем катализаторе выход бензина увеличивается на 2,6 мас.%, выходы кокса и водорода снижаются на 6 и 10 отн.% соответственно. По мере накопления пассиватора на катализаторе в бензиновой фракции наблюдается увеличение содержания нафтенов на 23 отн.%, снижение ароматических углеводородов и олефинов на 6 и 13 отн.% соответственно. Установлено, что маслорастворимый борсодержащий пассиватор активен в процессе дезактивации никеля при совместной подаче добавки с углеводородным сырьем.
Изучено протекание реакции безводородного гидрирования СО водяным паром (синтез Кёльбеля–Энгельгардта) на биметаллических катализаторах на основе биоугля в сравнении с образцом на оксидном носителе. Показано, что биметаллические железокобальтовые катализаторы на основе биоугля в процессе безводородного гидрирования СО превосходят по эффективности аналогичный катализатор на оксидном носителе – наибольшая величина конверсии СО составляет 88 и 38% соответственно. Методом рентгенофазового анализа определен состав активной фазы биметаллического железокобальтового катализатора на оксидном и углеродном носителе и генезис ее формирования.
Исследованы шесть медьсодержащих промышленных катализаторов гидрогенолиза глицерина с получением пропиленгликоля зарубежного и отечественного производства (К1–К6), а также in situ Cu–ZnO–катализатор. Наибольшей активностью среди всех исследованных катализаторов в интервале температур 200, 220 и 240°C обладает катализатор, полученный in situ. Продемонстрировано, что введение 5,3 мас.% Mn в состав катализатора Cu–AlO повышает конверсию глицерина почти в 2 раза. Определена связь активности изученных катализаторов с предполагаемым составом.
Показана принципиальная возможность получения экологичных компонентов горюче-смазочных материалов – оксиметиленовых эфиров – на базе отечественного сырья с использованием отечественного катализатора. Синтезы проводили путем конденсации формальдегида, высвобождающегося при ацидолизе его полимерных форм, со спиртами. Показано, что путем оптимизации параметров процесса синтеза можно добиться конверсии и выхода целевых продуктов на уровне не менее 60–70% при любом строении карбонильного компонента и составе катализатора. Показано, что снижение размера частиц и степени полимеризации параформальдегида, а также использование сухих типов катионообменных смол в качестве катализатора способствует увеличению не только скорости реакции, но и повышению максимально достижимой конверсии сырья.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation