RAS Chemistry & Material ScienceНефтехимия Petroleum Chemistry

  • ISSN (Print) 0028-2421
  • ISSN (Online) 3034-5626

Получение и фотокаталитические свойства допированного рутением диоксида титана

PII
S30345626S0028242125010041-1
DOI
10.7868/S3034562625010041
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 1
Pages
44-54
Abstract
Нефтехимия, Получение и фотокаталитические свойства допированного рутением диоксида титана
Keywords
Date of publication
29.12.2025
Year of publication
2025
Number of purchasers
0
Views
27

References

  1. 1. Nakata K., Fujishima A. TiO2 photocatalysis: Design and applications // J. Photochem. Photobiol. C. 2012. V. 13. № 3. P. 169–189. https://dx.doi.org/10.1016/j.jphotochemrev.2012.06.001
  2. 2. Li Z., Wang S., Wu J., Zhou W. Recent progress in defective TiO2 photocatalysts for energy and environmental applications // Renewable Sustainable Energy Rev. 2022. V. 156. ID 111980. https://dx.doi.org/10.1016/j.rser.2021.111980
  3. 3. Wang C., Liu H. L, Qu Y. TiO2‐based photocatalytic process for purification of polluted water: bridging fundamentals to applications // J. Nanomater. 2013. V. 2013. № 1. ID 319637. https://dx.doi.org/10.1155/2013/319637
  4. 4. Belver C., Bedia J., Gómez-Avilés A., Peñas-Garzón M., Rodriguez J.J. Semiconductor photocatalysis for water purification // Nanoscale Materials in Water Purification. 2019. P. 581–651. https://dx.doi.org/10.1016/B978-0-12-813926-4.00028-8
  5. 5. Gołąbiewska A., Malankowska A., Jarek M., Lisowski W., Nowaczyk G., Jurga S., Zaleska-Medynska A. The effect of gold shape and size on the properties and visible light-induced photoactivity of Au-TiO2 // Appl. Catal., B. 2016. V. 196. P. 27–40. https://dx.doi.org/10.1016/j.apcatb.2016.05.013
  6. 6. Su R., Tiruvalam R., He Q., Dimitratos N., Kesavan L., Hammond C., Lopez-Sanchez J.A., Bechstein R., Kiely C.J., Hutchings G.J., Besenbacher F. Promotion of phenol photodecomposition over TiO2 using Au, Pd, and Au–Pd nanoparticles // ACS Nano. 2012. V. 6. № 7. P. 6284–6292. https://dx.doi.org/10.1021/nn301718v
  7. 7. Jin C., Dai Y., Wei W., Ma X., Li M., Huang B. Effects of single metal atom (Pt, Pd, Rh and Ru) adsorption on the photocatalytic properties of anatase TiO2 // Appl. Surf. Sci. 2017. V. 426. P. 639–646. https://dx.doi.org/10.1016/j.apsusc.2017.07.065
  8. 8. Naranov E.R., Sadovnikov A.A., Arapova O.V., Bugaev A.L., Usoltsev O.A., Gorbunov D.N., Russo V., Murzin D.Y., Maximov A.L. Mechanistic insights on Ru nanoparticle in situ formation during hydrodeoxygenation of lignin-derived substances to hydrocarbons // Catal. Sci. Technol. The Royal Soc. of Chemistry, 2023. V. 13. № 5. P. 1571–1583. https://dx.doi.org/10.1039/D2CY01127A
  9. 9. Tian J., Li J., Wei N., Xu X., Cui H., Liu H. Ru nanoparticles decorated TiO2 nanobelts: A heterostructure towards enhanced photocatalytic activity and gas-phase selective oxidation of benzyl alcohol // Ceram. Int. 2016. V. 42. № 1. P. 1611–1617. https://dx.doi.org/10.1016/j.ceramint.2015.09.112
  10. 10. Shen X., Garces L.-J., Ding Y., Laubernds K., Zerger R.P., Aindow M., Neth E.J., Suib S.L. Behavior of H2 chemisorption on Ru/TiO2 surface and its application in evaluation of Ru particle sizes compared with TEM and XRD analyses // Appl. Catal., A. 2008. V. 335. № 2. P. 187–195. https://dx.doi.org/10.1016/j.apcata.2007.11.017
  11. 11. Zhang Y., Su X., Li L., Qi H., Yang C., Liu W., Pan X., Liu X., Yang X., Huang Y., Zhang T. Ru/TiO2 catalysts with size-dependent metal/support interaction for tunable reactivity in Fischer–Tropsch synthesis // ACS Catal. 2020. V. 10. № 21. P. 12967–12975. https://dx.doi.org/10.1021/acscatal.0c02780
  12. 12. Zaera F. Nanostructured materials for applications in heterogeneous catalysis // Chem. Soc. Rev. 2013. V. 42. № 7. P. 2746–2762. https://dx.doi.org/10.1039/C2CS35261C
  13. 13. Anisimov A.A., Minyaylo E.O., Shakirova A.R., Shchegolikhina O.I. Evolution of organometallasiloxanes // Polym. Sci. Ser. C. 2023. V. 65. № 2. P. 230–258. https://dx.doi.org/10.1134/S181123822370042X
  14. 14. Levitsky M.M., Yalymov A.I., Kulakova A.N., Petrov А.А., Bilyachenko А.N. Cage-like metallasilsesquioxanes in catalysis: A review // J. Mol. Catal. A: Chem. 2017. V. 426. P. 297–304. https://dx.doi.org/10.1016/j.molcata.2016.06.016
  15. 15. Ребров Е.А., Музафаров А.М., Жданов А.А. Натрийоксиорганоалкоксисиланы — реагенты для направленного синтеза функциональных органосилоксанов // ДАН. 1988. V. 302. № 2. P. 346.
  16. 16. Tebeneva N.A., Meshkov I.B., Тarasenkov А.N., Polshchikova N.V., Кalinina A.A., Buzin M.I., Serenko О.А., Zubavichus Y.V., Katsoulis D.E., Мuzafarov А.М. Polyfunctional branched metallosiloxane oligomers and composites based on them // J. Organomet. Chem. 2018. V. 868. P. 112–121. https://dx.doi.org/10.1016/j.jorganchem.2018.04.011
  17. 17. Tarasenkov A.N., Parshina M.S., Tebeneva N.A., Borisov K.M., Goncharuk G.P., Shevchenko V.G., Ponomarenko S.A., Muzafaro A.M. Metalloalkoxysiloxanes-cured polydimethylsiloxane compositions filled with silica component for special applications: dielectric and mechanical properties // Express Polym. Lett. 2022. V. 16. № 8. P. 846–870. https://dx.doi.org/10.3144/expresspolymlett.2022.62
  18. 18. Parshina M.S., Tarasenkov A.N., Aysin R.R., Tebeneva N.A., Buzin M.I., Afanasyev E.S., Serenko O.A, Muzafarov A.M. Monitoring the curing processes of epoxy oligomers with partially substituted polyethoxymetallosiloxanes by IR spectroscopy and thermomechanical analysis // J. of Applied Polymer Sci. 2021. V. 138. № 36. ID 50918. https://dx.doi.org/10.1002/app.50918
  19. 19. Andropova U.S., Tebeneva N.A., Serenko O.A., Tarasenkov A.N., Buzin M.I., Shaposhnikova V.V., Muzafarov A.M. Nanocomposites based on polyarylene ether ketones from sol–gel process: Characterizations and prospect applications // Mater. Des. 2018. V. 160. P. 1052–1058. https://dx.doi.org/10.1016/j.matdes.2018.10.033
  20. 20. Andropova U., Serenko O., Tebeneva N., Tarasenkov A., Buzin M., Afanasyev E., Sapozhnikov D., Bukalov S., Leites L., Aysin R., Polezhaev A., Naumkin A., Novikov L., Chernik V., Voronina E., Muzafarov A. Atomic oxygen erosion resistance of polyimides filled hybrid nanoparticles // Polym. Test. 2020. V. 84. ID 106404. https://dx.doi.org/10.1016/j.polymertesting.2020.106404
  21. 21. Elsalamony R.A., Mahmoud S.A. Preparation of nanostructured ruthenium doped titania for the photocatalytic degradation of 2-chlorophenol under visible light // Arabian J. of Chemistry. 2017. V. 10. № 2. P. 194–205. https://dx.doi.org/10.1016/j.arabjc.2012.06.008
  22. 22. Gong B., Wu P., Yang J., Peng X., Deng H., Yin G. Electrochemical and photocatalytic properties of Ru-doped TiO2 nanostructures for degradation of methyl orange dye // Int. J. Electrochem. Sci. 2021. V. 16. № 2. ID 21023. https://dx.doi.org/10.20964/2021.02.18
  23. 23. Nguyen-Phan T.-D., Luo S., Vovchok D., Llorca J., Sallis S., Kattel S., Xu W., Piper L.F.J., Polyansky D.E., Senanayake S.D., Stacchiola D.J., Rodriguez J.A. Three-dimensional ruthenium-doped TiO2 sea urchins for enhanced visible-light-responsive H2 production // Phys. Chem. Chem. Phys. 2016. V. 18. № 23. P. 15972–15979. https://dx.doi.org/10.1039/C6CP00472E.
  24. 24. Senthilnanthan M., Ho D.P., Vigneswaran S., Ngo H.H., Shon H.K. Visible light responsive ruthenium-doped titanium dioxide for the removal of metsulfuron-methyl herbcide in aqueous phase // Separation and Purification Technology. 2010. V. 75. № 3. P. 415–419. https://dx.doi.org/10.1016/j.seppur.2010.05.019
  25. 25. Sadovnikov A.A., Baranchikov A.E., Zubavichus Y.V., Ivanova O.S., Murzin V.Y., Kozik V.V., Ivanov V.K. Photocatalytically active fluorinated nano-titania synthesized by microwave-assisted hydrothermal treatment // J. Photochem. Photobiol. A. 2015. V. 303–304. P. 36–43. https://dx.doi.org/10.1016/j.jphotochem.2015.01.010
  26. 26. Sadovnikov A.A., Nechaev E.G., Beltiukov A.N., Gavrilov A.I., Makarevich A.M., Boytsova O.V. Titania mesocrystals: working surface in photocatalytic reactions // Russ. J. Inorg. Chem. 2021. V. 66. № 4. P. 460–467. https://dx.doi.org/10.1134/S0036023621040197
  27. 27. Zhou J., Gao Z., Xiang G., Zhai T., Liu Z., Zhao W., Liang X., Wang L. Interfacial compatibility critically controls Ru/TiO2 metal-support interaction modes in CO2 hydrogenation // Nat. Commun. 2022. V. 13. № 1. ID 327. https://dx.doi.org/10.1038/s41467-021-27910-4
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library