RAS Chemistry & Material ScienceНефтехимия Petroleum Chemistry

  • ISSN (Print) 0028-2421
  • ISSN (Online) 3034-5626

Деасфальтизация нефти с использованием полиакрилонитриловых мембран, полученных из растворов с этилацетатом

PII
S30345626S0028242125010057-1
DOI
10.7868/S3034562625010057
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 1
Pages
55-66
Abstract
Нефтехимия, Деасфальтизация нефти с использованием полиакрилонитриловых мембран, полученных из растворов с этилацетатом
Keywords
Date of publication
29.12.2025
Year of publication
2025
Number of purchasers
0
Views
23

References

  1. 1. Moghani A.M., Loni R. Review on energy governance and demand security in oil-rich countries // Energy Strategy Reviews. 2025. V. 57. ID 101625. https://doi.org/10.1016/j.esr.2024.101625
  2. 2. Kammakakam I., Lai Z. Next-generation ultrafiltration membranes: A review of material design, properties, recent progress, and challenges // Chemosphere. 2023. V. 316. ID 13766. https://doi.org/10.1016/j.chemosphere.2022.137669
  3. 3. Iulianelli A., Drioli E. Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications // Fuel Process. Technol. 2020. V. 206. ID 106464. https://doi.org/10.1016/j.fuproc.2020.106464
  4. 4. Munirasu S., Haija M.A., Banat F. Use of membrane technology for oil field and refinery produced water treatment. A review // Process Safety and Environmental Protection. 2016. V. 100. P. 183–202. https://doi.org/10.1016/j.psep.2016.01.010
  5. 5. Юшкин А.А., Балынин А.В., Нехаев А.И., Волков А.В. Разделение асфальтенов типа «Архипелаг» и «Континент» на ультрафильтрационных мембранах // Мембраны и мембранные технологии. 2021. Т. 11. № 2. С. 155–162. https://doi.org/10.1134/S2218117221020097 [Yushkin A.A., Balynin A.V., Nekhaev A.I., Volkov A.V. Separation of Archipelago- and Continent-Type Asphaltenes on Ultrafiltration Membranes // Membr. Membr. Technol. 2021. V. 3. P. 139–145. https://doi.org/10.1134/S2517751621020098]
  6. 6. Ramirez-Corredores M.M. In: «The Science and Technology of Unconventional Oils: Finding Refining Opportunities». New-York : Academic press. Elsevier, 2017. P. 41–222. https://doi.org/10.1016/B978-0-12-801225-3.00002-4
  7. 7. Магомедов Р.Н., Припахайло А.В., Марютина Т.А., Шамсуллин А.И., Айнуллов Т.С. Тренды развития и роль процесса сольвентной деасфальтизации в современной практике нефтепереработки (обзор) // Журн. прикл. химии. 2019. Т. 92. № S13. С. 1641–1656. https://doi.org/10.1134/S0044461819130024 [Magomedov R.N., Pripakhaylo A.V., Maryutina T.A., Shamsullin A.I., Ainullov T.S. Role of solvent deasphalting in the modern oil refining practice and trends in the process development // Russ. J. Appl. Chem. 2019. V. 92. № 12. P. 1634–1648. https://doi.org/10.1134/S1070427219120036]
  8. 8. Chisca S., Musteata V.E., Zhang W., Vasylevskyi S., Falca G., Abou-Hamad E., Emwas A.-H., Altunkaya M., Nunes S.P. Polytriazole membranes with ultrathin tunable selective layer for crude oil fractionation // Science 2022. V. 376. P. 1105–1110. https://doi.org/10.1126/science.abm7686
  9. 9. Duong A., Chattopadhyaya G., Kwok W.Y., Smith K.J. An experimental study of heavy oil ultrafiltration using ceramic membranes // Fuel. 1997. V. 76. № 9. P. 821–828. https://doi.org/10.1016/S0016-2361 (97)00074-4
  10. 10. Ashtari M., Ashrafizadeh S.N., Bayat M. Asphaltene removal from crude oil by means of ceramic membranes // J. Pet. Sci. Eng. 2012. V. 82–83. P. 44–49. https://doi.org/10.1016/j.petrol.2012.01.001
  11. 11. Ashtari M., Bayat M., Sattarin M. Investigation on asphaltene and heavy metal removal from crude oil using a thermal effect // Energy Fuels. 2010. V. 25. № 1. P. 300–306. https://doi.org/10.1021/ef100986m
  12. 12. Ching M.J.T.M., Pomerantz A.E., Andrews A.B., Dryden P., Schroeder R., Mullins O.C., Harrison C. On the nanofiltration of asphaltene solutions, crude oils, and emulsions // Energy Fuels. 2010. V. 24. № 9. P. 5028–5037. https://doi.org/10.1021/ef100645b
  13. 13. Юшкин А.А., Балынин А.В., Небесская А.П., Ефимов М.Н., Муратов Д.Г., Карпачева Г.П. Деасфальтизация нефти с использованием ультрафильтрационных ПАН мембран // Мембраны и мембранные технологии. 2023. T. 13. № 6. С. 521–534. https://doi.org/10.31857/S2218117223060093 [Yushkin A.A., Balynin A.V., Nebesskaya A.P., Efimov M.N., Muratov D.G., Karpacheva G.P. Oil deasphalting using ultrafiltration pan membranes // Membr. Membr. Technol. 2023. V. 5. P. 454–466]. https://doi.org/10.1134/S2517751623060094]
  14. 14. Юшкин А.А., Балынин А.В., Небесская А.П., Ефимов М.Н., Бахтин Д.С., Баскаков С.А., Канатьева А.Ю. Получение ультрафильтрационных мембран из композитов ПАН с гидрофильными частицами для выделения тяжелых компонентов нефти // Мембраны и мембранные технологии. 2023. Т. 13. № 4. С. 331–344. https://doi.org/10.31857/S2218117223040077 [Yushkin A.A., Balynin A.V., Nebesskaya A.P., Efimov M.N., Bakhtin D.S., Baskakov S.A., Kanatieva A.Y. Fabrication of ultrafiltration membranes from PAN composites with hydrophilic particles for separation of heavy oil components // Membr. Membr. Technol. 2023. V. 5. P. 290–301]. https://doi.org/10.1134/S2517751623040078]
  15. 15. Yushkin A.A., Balynin A.V., Nebesskaya A.P., Chernikova E.V., Muratov D.G., Efimov M.N., Karpacheva G.P. Acrylonitrile–acrylic acid copolymer ultrafiltration membranes for selective asphaltene removal from crude oil // Membranes. 2023. V. 13. № 9. ID 775. https://doi.org/10.3390/membranes13090775
  16. 16. Shi T.P., Hu Y.X., Xu Z.M., Su T., Wang R.A. Characterizing petroleum vacuum residue by supercritical fluid extraction and fractionation // Ind. Eng. Chem. Res. 1997. V. 36. № 9. P. 3988–3992. https://doi.org/10.1021/ie970152b
  17. 17. Barbier J., Marques J., Caumette G., Merdrignac I., Bouyssiere B., Lobinski R., Lienemann C.P. Monitoring the behaviour and fate of nickel and vanadium complexes during vacuum residue hydrotreatment and fraction separation // Fuel Process. Technol. V. 119. P. 185–189. https://doi.org/10.1016/j.fuproc.2013.11.004
  18. 18. Sarrade S., Schrive L., Gourgouillon D., Rios G.M. Enhanced filtration of organic viscous liquids by supercritical CO2 addition and fluidification // Application to used oil regeneration. Sep. Purif. Technol. 2001. V. 25. № 1–3. P. 315–321. https://doi.org/10.1016/S1383-5866 (01)00058-2
  19. 19. Rouzegari F., Sargolzaei J., Ramezanian N. A composite ultrafiltration membrane for regeneration of used engine oil // Energy Sour. Part A. 2020. V. 42. P. 1–16. https://doi.org/10.1080/15567036.2020.1818009
  20. 20. Song G.-J., Seo Y.-C., Pudasainee D., Kim I.-T. Characteristics of gas and residues produced from electric arc pyrolysis of waste lubricating oil. Waste Management. 2010. V. 30. № 7. P. 1230–1237. https://doi.org/10.1016/j.wasman.2009.10.004
  21. 21. Rodriguez C., Sarrade S., Schrive L., Dresch-Bazile M., Paolucci D., Rios G.M. Membrane fouling in cross-flow ultrafiltration of mineral oil assisted by pressurised CO2 // Desalination. 2002. V. 144. № 1–3. P.173–178. https://doi.org/10.1016/S0011-9164 (02)00308-9
  22. 22. Nebesskaya A., Kanateva A., Borisov R., Yushkin A., Volkov V., Volkov A. Polyacrylonitrile ultrafiltration membrane for separation of used engine oil // Polymers. 2024. V. 16. № 20. ID 2910. https://doi.org/10.3390/polym16202910
  23. 23. Marbelia L., Mulier M., Vandamme D., Muylaert K., Szymczyk A., Vankelecom I.F.J. Polyacrylonitrile membranes for microalgae filtration: Influence of porosity, surface charge and microalgae species on membrane fouling // Algal Res. 2016. V. 19. P. 128–137. https://doi.org/10.1016/j.algal.2016.08.004
  24. 24. Guillen G.R., Pan Y., Li M., Hoek E.M.V. Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review // Ind. Eng. Chem. Res. 2011. V. 50. № 7. P. 3798–3817. https://doi.org/10.1021/ie101928r
  25. 25. Yushkin A.A., Efimov M.N., Malakhov A.O., Karpacheva G.P., Bondarenko G., Marbelia L., Vankelecom I.F.J., and Volkov A.V. Creation of highly stable porous polyacrylonitrile membranes using infrared heating // Reactive and Functional Polymers. 2021. V. 158. ID 104793. https://doi.org/10.1016/j.reactfunctpolym.2020.104793
  26. 26. Moghadassi A.R., Bagheripour E., Hosseini S.M. Investigation of the effect of tetrahydrofuran and acetone as cosolvents in acrylonitrile–butadiene–styrene–based nanofiltration membranes // J. Appl. Polym. Sci. 2017. V. 134. Is. 26. ID 44993. https://doi.org/10.1002/app.44993
  27. 27. Юшкин А.А., Балынин А.В., Ефимов М.Н., Муратов Д.Г., Карпачева Г.П., Волков А.В. Формование многослойных мембран из одного полимера с использованием обработки ИК-излучением. Мембраны и мембранные технологии // 2022. Т. 12. № 4. C. 286–293. https://doi.org/10.31857/S2218117222040113
  28. 28. Yushkin A., Basko A., Balynin A., Efimov M., Lebedeva T., Ilyasova A., Pochivalov K., Volkov A. Effect of acetone as co-solvent on fabrication of polyacrylonitrile ultrafiltration membranes by non-solvent induced phase separation // Polymers. 2022. V. 14. № 21. ID 4603. https://doi.org/10.3390/polym14214603
  29. 29. Xu Y., Tognia M., Guo D., Shen L., Li R., Lin H. Facile preparation of polyacrylonitrile-co-methylacrylate based integrally skinned asymmetric nanofiltration membranes for sustainable molecular separation: a one-step method // J. Colloid Interface Sci. 2019. V. 546. P. 251–261. https://doi.org/10.1016/j.jcis.2019.03.067.
  30. 30. Yushkin A., Balynin A., Efimov M., Pochivalov K., Petrova I., Volkov A. Fabrication of polyacrylonitrile UF membranes by VIPS method with acetone as co-solvent // Membranes. 2022. V. 12. № 5. ID 523. https://doi.org/10.3390/membranes12050523
  31. 31. Barth C., Goncalves M.C., Pires A.T.N., Roeder J., Wolf B.A. Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance // J. Memb. Sci. 2000. V. 169. № 2. P. 287–299. https://doi.org/10.1016/S0376-7388 (99)00344-0
  32. 32. Jung B., Yoon J.K., Kim B., Rhee H.W. Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes // J. Membr. Sci. 2004. V. 243. № 1–2. P. 45–57. https://doi.org/10.1016/j.memsci.2004.06.011
  33. 33. Rekha Panda S., De S. Effects of polymer molecular weight, concentration, and role of polyethylene glycol as additive on polyacrylonitrile homopolymer membranes // Polym. Eng. Sci. 2014. V. 54. № 10. P. 2375–2391. https://doi.org/10.1002/pen.23792
  34. 34. Lohokare H., Bhole Y., Taralkar S., Kharul U. Poly (acrylonitrile) based ultrafiltration membranes: Optimization of preparation parameters. Desalination. 2011. V. 282. P. 46–53. https://doi.org/10.1016/j.desal.2011.04.009
  35. 35. Российский федеральный геологический фонд: официальный сайт. URL: http://www.rfgf.ru (дата обращения: 09.11.2024)
  36. 36. Saini B., Sinha M.K., Dey A. Functionalized polymeric smart membrane for remediation of emerging environmental contaminants from industrial sources: Synthesis, characterization and potential applications // Process Saf. Environ. Prot. 2022. V. 161. P. 684–702. https://doi.org/10.1016/j.psep.2022.03.075
  37. 37. Shenghui L., Jintuan Z., Haotian J., Zhou J. The establishment of PES/AMPS-PAN ultrafiltration membrane with the property of self-repairing both physical and chemical damage // J. Memb. Sci. 2023. V. 687. ID 122051. https://doi.org/10.1016/j.memsci.2023.122051
  38. 38. Bellamy L. The Infra-Red Spectra of Complex Molecules. Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. https://doi.org/10.1007/978-94-011-6017-9
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library