RAS Chemistry & Material ScienceНефтехимия Petroleum Chemistry

  • ISSN (Print) 0028-2421
  • ISSN (Online) 3034-5626

INCREASING THERMAL STABILITY OF BIO-OIL BY NEUTRALIZATION AND CATALYTIC CRACKING OF STABILIZED PRODUCTS

PII
S30345626S0028242125020049-1
DOI
10.7868/S3034562625020049
Publication type
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 2
Pages
116-127
Abstract
This work investigates a method for stabilizing bio-oil by increasing its pH through treatment with sodium hydroxide and ammonia. It was shown, that alkaline treatment significantly improves the thermal stability of bio-oil and provide the possibility of its involvement in the process of catalytic cracking of vacuum gas oil was demonstrated. The stabilized samples were subjected to catalytic cracking in order to study the effect of the processing stage on the yield of the main products. An increase in the pH level of bio-oil contributes the intensification of the cracking process. Sodium hydroxide treatment leads to an increase in the conversion of vacuum gas oil from 78.6 to 82.2 % wt. and the yield of the gasoline fraction (IBP-200ºC) increased from 44.7 to 47.3 % wt. Ammonia treatment leads to an increase the yield of the gasoline fraction from 50 to 54.2 % wt. However, the cracking of bio-oil treated with sodium hydroxide led to irreversible catalyst deactivation due to the presence of sodium, whereas no such deactivation was observed for bio-oil treated with ammonia.
Keywords
Date of publication
29.12.2025
Year of publication
2025
Number of purchasers
0
Views
20

References

  1. 1. URL: https://www.globalcarbonproject.org/global/pdf/LeQuere_2014_GlobalCarbonBudget2014.ESDD-D.pdf/ сайт фирмы Global Carbon Project (дата обращения: 17.11.2024).
  2. 2. Jindal M., Negi A., Palla V.C.S., Krishna B.B., Thallada B. Catalytic interventions in bio-oil production from lignocellulosic biomass and co-processing with petroleum refinery fractions: A review // Biomass and Bioenergy. 2024. V. 183. ID107119. https://doi.org/10.1016/j.biombioe.2024.107119
  3. 3. Hirano A., Hon-Nami K., Kunito S., Hada M., Ogushi Y. Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance // Catalysis Today. 1998. V. 45, № 1-4. P. 399–404. https://doi.org/10.1016/S0920-5861 (98)00275-2
  4. 4. Pütün A.E., Ozbay N., Onal E.P., Pütün E. Fixed-bed pyrolysis of cotton stalk for liquid and solid products // Fuel Process. Technol. 2005. V. 86, № 11. P. 1207–1219. https://doi.org/10.1016/j.fuproc.2004.12.006
  5. 5. Samolada M.C., Baldauf W., Vasalos I.A. Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking // Fuel. 1998. V. 77, № 14. P. 1667–1675. https://doi.org/10.1016/S0016-2361 (98)00073-8
  6. 6. Xu J., Li C., Dai L., Xu C., Zhong Y., Yu F., Si C. Biomass fractionation and lignin fractionation towards lignin valorization // ChemSusChem. 2020. V. 13, № 17. P. 4284–4295. https://doi.org/10.1002/cssc.202001491
  7. 7. Lindfors C., Kuoppala E., Oasmaa A., Solantausta Y., Arpiainen V. Fractionation of bio-oil // Energy & Fuels. 2014. V. 28, № 9. P. 5785–5791. https://doi.org/10.1021/ef500754d
  8. 8. Chan Y.H., Loh S.K., Chin B.L.F., Yiin C.L., How B.S., Cheah K.W., Wong M.E., Loy A.C.M., Gwee Y.L., Lo S.L.Y., Yusup S., Lam S.S. Fractionation and extraction of bio-oil for production of greener fuel and value-added chemicals: Recent advances and future prospects // Chem. Engin. J. 2020. V. 397. ID12540. https://doi.org/10.1016/j.cej.2020.125406
  9. 9. Oasmaa A., Kuoppala E., Selin J.F., Gust S., Solantausta Y. Fast pyrolysis of forestry residue and pine. 4. Improvement of the product quality by solvent addition // Energy & Fuels. 2004. V. 18, № 5. P. 1578–1583. https://doi.org/10.1021/ef040038n
  10. 10. Mahfud F.H., Melian-Cabrera I., Manurung R., Heeres H.J. Biomass to fuels: upgrading of flash pyrolysis oil by reactive distillation using a high boiling alcohol and acid catalysts // Process Safety and Environmental Protection. 2007. V. 85, № 5. P. 466–472. https://doi.org/10.1205/psep07013
  11. 11. Junming X., Jianchun J., Yunjuan S., Yanju L. Bio-oil upgrading by means of ethyl ester production in reactive distillation to remove water and to improve storage and fuel characteristics // Biomass and Bioenergy. 2008. V. 32, № 11. P. 1056–1061. https://doi.org/10.1016/j.biombioe.2008.02.002
  12. 12. Zhang Q., Chang J., Wang Xu.Y. Upgrading bio-oil over different solid catalysts // Energy & Fuels. 2006. V. 20, № 6. P. 2717–2720. https://doi.org/10.1021/ef060224o
  13. 13. Xiong W.M., Zhu M.Z., Deng L., Fu Y., Guo Q.X. Esterification of organic acid in bio-oil using acidic ionic liquid catalysts // Energy & Fuels. 2009. V. 23, № 4. P. 2278–2283. https://doi.org/10.1021/ef801021j
  14. 14. Peng J., Chen P., Lou H., Zheng X. Upgrading of bio-oil over aluminum silicate in supercritical ethanol // Energy & Fuels. 2008. V. 22, № 5. P. 3489–3492. https://doi.org/10.1021/ef8001789
  15. 15. Peng J., Chen P., Lou H., Zheng X. Catalytic upgrading of bio-oil by HZSM-5 in sub- and super-critical ethanol // Bioresource Technology. 2009. V. 100, № 13. P. 3415–3418. https://doi.org/10.1016/j.biortech.2009.02.007
  16. 16. de Miguel Mercader F., Groeneveld M.J., Kersten S.R.A., Way N.W.J., Schaverien C.J., Hogendoorn J.A. Production of advanced biofuels: Co-processing of upgraded pyrolysis oil in standard refinery units // Appl. Catalysis B: Environmental. 2010. V. 96, № 1-2. P. 57–66. https://doi.org/10.1016/j.apcatb.2010.01.033
  17. 17. Elliott D.C., Hart T.R., Neuenschwander G.G., Rotness L.J., Zacher A.H. Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products // Environmental Progress & Sustainable Energy. 2009. V. 28, № 3. P. 441–449. https://doi.org/10.1002/ep.10384
  18. 18. Kwon K.C., Mayfield H., Marolla T., Nichols B., Mashburn M. Catalytic deoxygenation of liquid biomass for hydrocarbon fuels // Renewable Energy. 2011. V. 36, № 3. P. 907–915. https://doi.org/10.1016/j.renene.2010.09.004
  19. 19. Venderbosch R.H., Ardiyanti A.R., Wildschut J., Oasmaa A., Heeres H.J. Stabilization of biomass-derived pyrolysis oils // J. of Chem. Technology & Biotechnology. 2010. V. 85, № 5. P. 674–686. https://doi.org/10.1002/jctb.2354
  20. 20. Fogassy G., Thegarid N., Toussaint G., van Veen A.C., Schuurman Y., Mirodatos C. Biomass derived feedstock co-processing with vacuum gas oil for second-generation fuel production in FCC units // Appl. Catalysis B: Environ. 2010. V. 96, № 3-4. P. 476–485. https://doi.org/10.1016/j.apcatb.2010.03.008
  21. 21. Tang Z., Lu Q., Zhang Y., Zhu X., Guo Q. One step bio-oil upgrading through hydrotreatment, esterification, and cracking // Industrial & Engineering Chemistry Research. 2009. V. 48, № 15. P. 6923–6929. https://doi.org/10.1021/ie900108d
  22. 22. Deng L., Yan Z., Fu Y., Guo Q.X. Green solvent for flash pyrolysis oil separation // Energy & Fuels. 2009. V. 23, № 6. P. 3337–3338. https://doi.org/10.1021/ef9002268
  23. 23. Park L.K.E., Ren S., Yiacoumi S., Ye X.P., Borole A.P., Tsouris C. pH neutralization of aqueous bio-oil from switchgrass intermediate pyrolysis using process intensification devices // Energy & Fuels. 2017. V. 31, № 9. P. 9455–9464. https://doi.org/10.1021/acs.energyfuels.7b00854
  24. 24. Дементьев К.И., Паланкоев Т.А., Кузнецов П.С., Абрамова Д.С., Ромазанова Д.А., Махин Д.Ю., Максимов А.Л. Влияние размерного фактора на активность цеолитов в реакции жидкофазного крекинга углеводородов // Нефтехимия. 2020. Т. 60, № 1. С. 34–43. https://doi.org/10.31857/S0028242120010062 [Dement'ev K.I., Palankoev T.A., Kuznetsov P.S., Abramova D.S., Romazanova D.A., Makhin D.Y., Maksimov A.L. Effect of size factor on the activity of zeolites in the liquid-phase cracking of hydrocarbons // Petrol. Chem. 2020. V. 60. P. 30–38. https://doi.org/10.1134/S0965544120010065]
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library