- PII
- S30345626S0028242125030016-1
- DOI
- 10.7868/S3034562625030016
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 65 / Issue number 3
- Pages
- 173-181
- Abstract
- Впервые получены спектрально чистые деметаллированные порфирины непосредственно из асфальтенов нефти. Из них синтезированы комплексы с различными металлами: кобальтом, никелем, медью, цинком с выходами 93–97% и охарактеризованы методами УФ-видимой спектроскопии, времяпролетной масс-спектрометрии с матрично-активированной лазерной десорбцией/ионизацией (МАЛДИ), ИК-спектроскопии. Показана возможность использования металлокомплексов, полученных из нефтяных порфиринов, в реакциях каталитического эпоксидирования алкенов и окисления спиртов. В присутствии нефтяных порфиринов кобальта происходит 100%-ная конверсия циклогексена и 1-октена с образованием 1,2-эпоксициклогексана и 1,2-эпоксиоктана соответственно, а окисление бензилового и бутилового спиртов протекает с конверсией >90 и 86% с образованием бензальдегида и бутановой кислоты соответственно. Нефтяные порфирины меди, никеля и цинка не проявили каталитическую активность в этих процессах.
- Keywords
- Date of publication
- 02.07.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 34
References
- 1. Che C.M., Huang J.S. Metalloporphyrin-based oxidation systems: From biomimetic reactions to application in organic synthesis // Chem. Commun. 2009. № 27. P. 3996–4015. https://doi.org/10.1039/b901221d
- 2. Hu X., Huang Z., Gu G., Wang L., Chen B. Heterogeneous catalysis of the air oxidation of thiols by the cobalt porphyrin intercalated into a phosphatoantimonic acid host // J. Mol. Catal. A: Chem. 1998. V. 132, № 2–3. P. 171–179. https://doi.org/10.1016/S1381-1169 (97)00240-9
- 3. Hassanein M., Gerges S., Abdo M., El-Khalafy S. Catalytic activity and stability of anionic and cationic water soluble cobalt(II) tetraaryliporphyrin complexes in the oxidation of 2-mercaptoethanol by molecular oxygen // J. Mol. Catal. A: Chem. 2005. V. 240, № 1–2. P. 22–26. https://doi.org/10.1016/j.molcata.2005.05.043
- 4. Ehsani M.R., Safadoor A.R., Avazzadeh R., Barkhordari A. Kinetic study of ethyl mercaptan oxidation in presence of Merox catalyst // Iran. J. Chem. Chem. Eng. 2013. V. 32. P. 71–80.
- 5. Payamifar S., Abdouss M., Poursatnar Marjani A. An overview of porphyrin-based catalysts for sulfide oxidation reactions // Polyhedron. 2025. V. 269. ID 117389. https://doi.org/10.1016/j.poly.2025.117389
- 6. Raveena R., Bajaj A., Tripathi A., Kumar P. Recent catalytic applications of porphyrin and phthalocyanine-based nanomaterials in organic transformations // SynOpen. 2025. V. 9, № 2. P. 138–156. https://doi.org/10.1055/a-2541-6382
- 7. Tagliatesta P., Floris B., and Galloni P. Recent developments in the formation of carbon-carbon bond reactions catalyzed by metalloporphyrins // J. Porphyr. Phthalocyanines. 2003. V. 7, № 5. P. 351–356. https://doi.org/10.1142/S1088424603000458
- 8. Estrada-Montano A.S., Gomez-Benitez V., Camacho-Davila A., Rivera E., Morales-Morales D., Zaragoza-Galan G. Metalloporphyrins: Ideal catalysts for olefin epoxidations // J. Porphyr. Phthalocyanines. 2022. V. 26, № 12. P. 821–836. https://doi.org/10.1142/s1088424622300051
- 9. Che C.M., Lo V.K.Y., Zhou C.Y., Huang J.S. Selective functionalisation of saturated C–H bonds with metalloporphyrin catalysts // Chem. Soc. Rev. 2011. V. 40. P. 1950–1975. https://doi.org/10.1039/c0cs00142b
- 10. Costas M. Selective C–H-oxidation catalysed by metalloporphyrins // Coord. Chem. Rev. 2011. V. 255, № 23–24. P. 2912–2932. https://doi.org/10.1016/j.ccr.2011.06.026
- 11. Le Maux P., Srour H.F., Simonneaux G. Enantioselective water-soluble iron-porphyrin-catalysed epoxidation with aqueous hydrogen peroxide and hydroxylation with iodobenzene diacetate // Tetrahedron. 2012. V. 68, № 29. P. 5824–5828. https://doi.org/10.1016/j.tet.2012.05.014
- 12. Haber J., Matachowski L., Pamin K., Polkowicz J. The effect of peripheral substituents in metalloporphyrins on their catalytic activity in Lyons system // J. Mol. Catal. A: Chem. 2003. V. 198, № 1–2. P. 215–221. https://doi.org/10.1016/S1381-1169 (02)00688-X
- 13. Guo C.C., Liu X.Q., Liu Q., Liu Y., Chu M.F., Lin W.Y. First industrial-scale biomimetic oxidation of hydrocarbon with air over metalloporphyrins as cytochrome P-450 monooxygenase model and its mechanistic studies // J. Porphyr. Phthalocyanines. 2009. V. 13, № 12. P. 1250–1254. https://doi.org/10.1142/S1088424609001613
- 14. Nakagaki S., Ferreira G.K.B., Ucoski G.M., de Freitas Castro K.A.D. Chemical reactions catalysed by metalloporphyrin-based metal-organic frameworks // Molecules. 2013. V. 18, № 6. P. 7279–7308. https://doi.org/10.3390/molecules18067279
- 15. Barona-Castano J.C., Carmona-Vargas C.C., Brocksom T.J., de Oliveira K.T. Porphyrins as catalysts in scalable organic reactions // Molecules. 2016. V. 21, № 3. ID 310. https://doi.org/10.3390/molecules21030310
- 16. Zhang J.L., Che C.M. Soluble polymer-supported ruthenium porphyrin catalysts for epoxidation, cyclopropanation, and aziridination of alkenes // Org. Lett. 2002. V. 4, № 11. P. 1911–1914. https://doi.org/10.1021/o00259138
- 17. Yu X.Q., Huang J.S., Yu W.Y., Che C.M. Polymer-supported ruthenium porphyrins: versatile and robust epoxidation catalysts with unusual selectivity // J. Am. Chem. Soc. 2000. V. 122, № 22. P. 5337–5342. https://doi.org/10.1021/ja000461k
- 18. Zhang J.L., Zhou H.B., Huang J.S., Che C.M. Dendritic ruthenium porphyrins: A new class of highly selective catalysts for alkene epoxidation and cyclopropanation // Chem. Eur. J. 2002. V. 8, № 7. P. 1554–1562. https://doi.org/10.1002/1521-3765 (20020402) 8:71554::AID–CHEM15543.0.CO;2-R
- 19. Zhang J.L., Che C.M. Dichlororuthenium (IV) complex of meso-tetrakis (2,6-dichlorophenyl)porphyrin: active and robust catalyst for highly selective oxidation of arenes, unsaturated steroids, and electron-deficient alkenes by using 2,6-dichloropyridine N-oxide // Chem. Eur. J. 2005. V. 11, № 13. P. 3899–3914. https://doi.org/10.1002/chem.200401008
- 20. Nam W., Oh S., Sun Y.J., Kim J., Kim W., Woo S.K., Shin W. Factors affecting the catalytic epoxidation of olefins by iron porphyrin complexes and HO in protic solvents // J. Org. Chem. 2003. V. 68, № 20. P. 7903–7906. https://doi.org/10.1021/jo034493c
- 21. Collman J., Zhang X., Lee V., Ulfelman E., Brauman J. Regioselective and enantioselective epoxidation catalysed by metalloporphyrins // Science. 1993. V. 261, № 5127. P. 1404–1411. https://doi.org/10.1126/science.8367724
- 22. Groves J.T., Myers R.S. Catalytic asymmetric epoxidations with chiral iron porphyrins // J. Am. Chem. Soc. 1983. V. 105, № 18. P. 5791–5796. https://doi.org/10.1021/ja00356a016
- 23. Rose E., Andrioletti B., Zrig S., Quelquejeu-Ehieve M. Enantioselective epoxidation of olefins with chiral metalloporphyrin catalysts // Chem. Soc. Rev. 2005. V. 34. P. 573–583. https://doi.org/10.1039/b405679p
- 24. Stephenson N.A., Bell A.T. Mechanistic insights into iron porphyrin-catalysed olefin epoxidation by hydrogen peroxide: Factors controlling activity and selectivity // J. Mol. Catal. A: Chem. 2007. V. 275, № 1–2. P. 54–62. https://doi.org/10.1016/j.molcata.2007.05.005
- 25. Cunningham I.D., Danks T.N., Hay J.N., Hamerton I., Gunathilagan S. Evidence for parallel destructive, and competitive epoxidation and dismutation pathways in metalloporphyrin-catalysed alkene oxidation by hydrogen peroxide // Tetrahedron. 2001. V. 57. P. 6847–6853. https://doi.org/10.1016/S0040-4020 (01)00639-1
- 26. Mironov N.A., Milordov D.V., Abilova G.R., Yakubova S.G., Yakubov M.R. Methods for studying petroleum porphyrins (review) // Petrol. Chemistry. 2019. V. 59, № 10. P. 1077–1091. https://doi.org/10.1134/S096554419100074
- 27. Zhao X., Xu C., Shi Q. Porphyrins in Heavy Petroleum: A Review. In: Structure and modeling of complex petroleum mixtures, Structure and Bonding, Xu C., Shi Q. (Eds.). ISSN 0081-5993. Springer, Cham., 2015. P. 39–70. https://doi.org/10.1007/430_2015_189
- 28. McKay Rytting B., Singh I.D., Kilpatrick P.K., Harper M.R., Mennito A.S., Zhang Y. Ultrahigh-purity vanadyl petroporphyrins // Energy Fuels. 2018. V. 32, № 5. P. 5711–5724. https://doi.org/10.1021/acs.energyfuels.7003358
- 29. Tazeev D., Musin L., Mironov N., Milordov D., Tazeeva E., Yakubova S., Yakubov M. Complexes of transition metals with petroleum porphyrin ligands: preparation and evaluation of catalytic ability // Catalysts. 2021. V. 11, № 12. ID 1506. https://doi.org/10.3390/catall1121506
- 30. Milordov D.V., Usmanova G.Sh., Yakubov M.R., Yakubova S.G., Romanov G.V. Comparative analysis of extractive methods of porphyrin separation from heavy oil asphaltenes // Chem. Technol. Fuels Oils. 2013. V. 49, № 3. P. 232–238. https://doi.org/10.1007/s10553-013-0435-7
- 31. Yakubov M.R., Milordov D.V., Yakubova S.G., Borissov D.N., Gryaznov P.I., Usmanova G. Sh. Sulfuric acid assisted extraction and fractionation of porphyrins from heavy petroleum residuals with a high content of vanadium and nickel // Petrol. Sci. Technol. 2015. V. 33, № 9. P. 992–998. https://doi.org/10.1080/10916466.2015.1030078