RAS Chemistry & Material ScienceНефтехимия Petroleum Chemistry

  • ISSN (Print) 0028-2421
  • ISSN (Online) 3034-5626

Зависимость свойств фторированного активизирующего носителя и нанесённого металлоценового катализатора сополимеризации этилена от предварительной термообработки мезопористого силикагеля

PII
S30345626S0028242125040033-1
DOI
10.7868/S3034562625040033
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 4
Pages
295-305
Abstract
Использование активирующих носителей в приготовлении нанесенных металлоценовых катализаторов полимеризации олефинов, получаемых реакцией мезопористого силикагеля с алюминийорганическими соединениями, термоокислительной обработкой и фторированием, позволяет избежать использования дорогостоящего и малодоступного метилалюмоксана (МАО). В работе представлены результаты исследования влияния температуры прокаливания мезопористого силикагеля ES70 на основные характеристики фторированных носителей на его основе и способность полученных носителей к активации (η-BuCH)ZrCl в присутствии EtAl. Эксперименты по суспензионной сополимеризации этилена и гексена‑1 выявили более высокую активность полученных катализаторов (2,2–2,5 кг/г) по сравнению с нанесенным металлоценовым катализатором, синтезированным с использованием МАО (1,73 кг/г). Показано, что повышение температуры предварительного прокаливания носителя снижает активность катализатора, практически не влияя на характеристики сополимера, что может быть использовано в полиолефиновой индустрии для управления важным параметром производительности нанесенного металлоценового катализатора полимеризации этилена.
Keywords
Date of publication
12.08.2025
Year of publication
2025
Number of purchasers
0
Views
27

References

  1. 1. Sauter D.W., Taoufik M., Boisson C. Polyolefins, a suc­cess story // Polymers. 2017. V. 9. № 6. ID 185. https://doi.org/10.3390/polym9060185
  2. 2. Jubinville D., Esmizadeh E., Saikrish­nan S., Tzogana­kis C., Mekon­nen T. A comprehensive review of global pro­duction and recycling methods of polyolefin (PO) based products and their post-recycling applications // Sustain. Mater. Technol. 2020. V. 25. ID e00188. https://doi.org/10.1016/j.susmat.2020.e00188
  3. 3. Qiao J.L., Guo M.F., Wang L.S., Liu D.B., Zhang X.F., Yu L.Q., Song W.B., Liu Y.Q. Recent advances in poly­olefin technology // Polym. Chem. 2011. V. 2. № 8. P. 1611–1623. https://doi.org/10.1039/c0py00352b
  4. 4. Weckhuysen B.M., Schoonheydt R.A. Olefin poly­meri­zation over supported chromium oxide catalysts // Catal. Today. 1999. V. 51. № 2. P. 215–221. https://doi.org/10.1016/s0920-5861 (99)00046-2
  5. 5. Nifant’ev, I.E., Salakhov I.I., Ivchenko P.V. Transition metal–(μ-Cl)–aluminum bonding in α-olefin and diene chemistry // Molecules. 2022. V. 27. № 21. ID 7164. https://doi.org/10.3390/molecules27217164
  6. 6. Nifant’ev, I., Komarov P., Sadrtdinova G., Safronov V., Kolosov N., Ivchenko P. Mechanistic insights of ethy­lene polymerization on Phillips chromium catalysts // Polymers. 2024. V. 16. № 5. ID 681. https://doi.org/10.3390/polym16050681
  7. 7. Shamiri A., Chakrabarti M.H., Jahan S., Hussain M.A., Kaminsky W., Aravind P.V., Yehye W.A. The influence of ziegler-natta and metallocene catalysts on polyolefin structure, properties, and processing ability // Mate­rials. 2014. V. 7. № 7. P. 5069–5108. https://doi.org/10.3390/ma7075069
  8. 8. Chum P.S., Swogger K.W. Olefin polymer tech­nolo­gies – history and recent progress at the Dow Chemical Company // Prog. Polym. Sci. 2008. V. 33. № 8. P. 797–819. https://doi.org/10.1016/j.progpolymsci.2008.05.003
  9. 9. Baier M.C., Zuideveld M.A., Mecking S. Post-metal­locenes in the industrial production of polyolefins // Angew. Chem. Int. Ed. 2014. V. 53. № 37. P. 9722–9744. https://doi.org/10.1002/anie.201400799
  10. 10. Bochmann M. The chemistry of catalyst activation: the case of group 4 polymerization catalysts // Orga­no­metallics. 2010. V. 29. № 21. P. 4711–4740. https://doi.org/10.1021/om1004447
  11. 11. Zaccaria F., Zuccaccia C., Cipullo R., Budze­laar P.H.M., Vittoria A., Macchioni A., Busico V., Ehm C. Methyl­alu­­minoxane’s molecular cousin: a well-defined and «complete» Al-activator for molecular olefin poly­me­rization catalysts // ACS Catal. 2021. V. 11. № 8. P. 4464–4475. https://doi.org/10.1021/acscatal.0c05696
  12. 12. Severn J.R., Chadwick J.C., Duchateau R., Friederichs N. «Bound but not gagged» immobilizing single-site α-olefin polymerization catalysts // Chem. Rev. 2005. V. 105. № 11. P. 4073–4147. https://doi.org/10.1021/cr040670d
  13. 13. Luo L., Younker J.M., Zabula A.V. Structure of me­thyl­aluminoxane (MAO): extractable [Al(CH3)2]+ for precatalyst activation // Science. 2024. V. 384. № 6703. P. 1424–1428. https://doi.org/10.1126/science.adm7305
  14. 14. Collins S., Linnolahti M. A cooperative model for me­tal­locene catalyst activation by methylaluminoxane // Dalton Trans. 2025. V. 54. № 6. P. 2331–2339. https://doi.org/10.1039/d4dt03124e
  15. 15. Saudemint T., Spitz R., Broyer J.-P., Malinge J., Verdel N. Activator solid support for metallocene catalysts in the polymerization of olefins, a process for preparing such a support, and the corresponding catalytic system and polymerization process. Patent US № 6239059. 2001.
  16. 16. Prades F., Broyer J.-P., Belaid I., Boyron O., Miserque O., Spitz R., Boisson C. Borate and MAO free activating supports for metallocene complexes // ACS Catal. 2013. V. 3. № 10. P. 2288–2293. https://doi.org/10.1021/cs400655y
  17. 17. Tisse V.F., Boisson C., McKenna T.F.L. Activation and deactivation of the polymerization of ethylene over rac-EtInd2ZrCl2 and (nBuCp)2ZrCl2 on an activating silica support // Macromol. Chem. Phys. 2014. V. 215. № 14. P. 1358–1369. https://doi.org/10.1002/macp.201400023
  18. 18. Prades F., Boisson C., Spitz R., Razavi A. Activating sup­ports for metallocene catalysis. Patent US № 7759271. 2010.
  19. 19. Prades F. Metallocene catalyst components supported on activating supports. Patent US № 8298977-B2. 2012.
  20. 20. Pannier G., Boisson C., Spitz R. Activating supports with controlled distribution of OH groups. Patent US № 8524627. 2006.
  21. 21. Tisse V.F., Prades F., Briquel R., Boisson C., McKen­na T.F.L. Role of silica properties in the polymerisation of ethylene using supported metallocene catalysts // Macromol. Chem. Phys. 2010. V. 211. № 1. P. 91–102. https://doi.org/10.1002/macp.200900311
  22. 22. Brunauer S., Emmett P.H., Teller E. Adsorption of ga­ses in multimolecular layers // J. Am. Chem. Soc. 1938. V. 60. № 2. P. 309–319. https://doi.org/10.1021/ja01269a023
  23. 23. Bae Y.-S., Yazaydın A.Ö., Snurr R.Q. Evaluation of the BET method for determining surface areas of MOFs and zeolites that contain ultra-micropores // Lang­muir. 2010. V. 26. № 8. P. 5475–5483. https://doi.org/10.1021/la100449z
  24. 24. Zhuravlev L.T. The surface chemistry of amorphous silica. Zhuravlev model // Colloids Surf. A: Phy­sicochem. Eng. Asp. 2000. V. 173. № 1–3. P. 1–38. https://doi.org/10.1016/s0927-7757 (00)00556-2
  25. 25. Barrett E.P., Joyner L.G., Halenda P.P. The deter­mi­nation of pore volume and area distributions in po­rous substances. I. Computations from nitrogen iso­­therms // J. Am. Chem. Soc. 1951. V. 73. № 1. P. 373–380. https://doi.org/10.1021/ja01145a126
  26. 26. Putz A.-M., Putz M.V. Spectral inverse quantum (Spec­tral-IQ) method for modeling mesoporous systems: Application on silica films by FTIR // Int. J. Mol. Sci. 2012. V. 13. № 12. P. 15925–15941. https://doi.org/10.3390/ijms131215925
  27. 27. Severn J.R. Recent developments in supported poly­olefin catalysts: a review. In: Multimodal Polymers with Supported Catalysts. Albunia A.R., Prades F., Je­re­mic D. (eds.) – Springer, Cham, 2019. P. 1–534. https://doi.org/10.1007/978-3-030-03476-4_1
  28. 28. McDaniel M.P., Jensen M.D., Jayaratne K., Col­lins K.S., Benham E.A., McDaniel N.D., Das P.K., Mar­tin J.L., Yang Q., Thorn M.G., Masino A.P. Chapter 7. Me­tal­locene activation by solid acids. In: Tailor-made polymers: via immobilization of alpha-olefin poly­merization catalysts. Severn J.R., Chadwick J.C. (eds.), 2008. P. 171–210. https://doi.org/10.1002/9783527621668.ch7
  29. 29. Fripiat J.J., Uytterhoeven J. Hydroxyl content in silica gel «Aerosil» // J. Phys. Chem. 1962. V. 66. № 5. P. 800–805. https://doi.org/10.1021/j100811a007
  30. 30. Ide M., El-Roz M., De Canck E., Vicente A., Planckaert T., Bogaerts T., Van Driessche I., Lynen F., Van Spey­broeck V., Thybault-Starzyk F., Van Der Voort P. Quantification of silanol sites for the most common mesoporous ordered silicas and organosilicas: total versus accessible silanols // Phys. Chem. Chem. Phys. 2013. V. 15. № 2. P. 642–650. https://doi.org/10.1039/c2cp42811c
  31. 31. Atiqullah M., Akhtar M.N., Moman A.A., Abu-Ra­qa­bah A.H., Palackal S.J., Al-Muallem H.A., Hamed O.M. Influence of silica calcination temperature on the performance of supported catalyst SiO2–nBuSnCl3/MAO/(nBuCp)2ZrCl2 polymerizing ethylene without separately feeding the MAO cocatalyst // Appl. Catal. A: Gen. 2007. V. 320. P. 134–143. https://doi.org/10.1016/j.apcata.2007.01.023
  32. 32. Mueller R., Kammler H.K., Wegner K., Pratsinis S.E. OH surface density of SiO2 and TiO2 by thermogravimetric analysis // Langmuir. 2003. V. 19. № 1. P. 160–165. https://doi.org/10.1021/la025785w
  33. 33. Ek S., Root A., Peussa M., Niinistö L. Determination of the hydroxyl group content in silica by thermogravi­met­ry and a comparison with 1H MAS NMR results // Ther­mochim. Acta. 2001. V. 379. № 1–2. P. 201–212. https://doi.org/10.1016/s0040-6031 (01)00618-9
  34. 34. Pullukat T.J., Hoff R.E. Silica-based Ziegler–Natta ca­ta­lysts: a patent review // Catal. Rev. 1999. V. 41. № 3–4. P. 389–428. https://doi.org/10.1081/cr‑100101172
  35. 35. Antakli S.C., Serpinet J. Determination of the con­centration of silanol groups by a chemical reaction with methyllithium and GC measurements of evolved me­thane // Chromatographia. 1987. V. 23. P. 767–769. https://doi.org/10.1007/bf02312671
  36. 36. Scokart P.O., Selim S.A., Damon J.P., Rouxhet P.G. The chemistry and surface chemistry of fluorinated alu­­mina // J. Colloid Interface Sci. 1979. V. 70. № 2. P. 209–222. https://doi.org/10.1016/0021-9797 (79)90026-2
  37. 37. Soga K., Kaminaka M. Polymerization of propene with zirconocene-containing supported catalysts activated by common trialkylaluminiums // Makromol. Chem. 1993. V. 194. № 6. P. 1745–1755. https://doi.org/10.1002/macp.1993.021940621
  38. 38. Krahl T., Kemnitz E. Aluminium fluoride – the stron­gest solid Lewis acid: structure and reactivity // Catal. Sci. Technol. 2017. V. 7. № 4. P. 773–796. https://doi.org/10.1039/c6cy02369j
  39. 39. DuMont J.W., Marquardt A.E., Cano A.M., George S.M. Thermal atomic layer etching of SiO2 by a «conversion-etch» mechanism using sequential reactions of tri­me­thylaluminum and hydrogen fluoride // ACS Appl. Mater. Interfaces. 2017. V. 9. № 11. P. 10296–10307. https://doi.org/10.1021/acsami.7b01259
  40. 40. Stosiek C., Scholz G., Schroeder S.L.M., Kemnitz E. Structure and properties of noncrystalline aluminum oxide-hydroxide fluorides // Chem. Mater. 2010. V. 22. № 7. P. 2347–2356. https://doi.org/10.1021/cm903573a
  41. 41. Mysen B.O., Virgo D. Structure and properties of flu­orine-bearing aluminosilicate melts: the system Na2O-Al2O3-SiO2-F at 1 atm // Contrib. Mineral. Petrol. 1985. V. 91. P. 205–220. https://doi.org/10.1007/bf00413348
  42. 42. Yang Q., McDaniel M.P. Comparison of support effects on Phillips and metallocene catalysts // Catalysts. 2021. V. 11. № 7. ID 842. https://doi.org/10.3390/catal11070842
  43. 43. Танабе К. Твердые кислоты и основания / Пер. с англ., под ред. К.В. Топчиевой.  М.: Мир, 1973. 184 с.
  44. 44. Yurdakoç M., Akçay M., Tonbul Y., Yurdakoç K. Acidity of silica-alumina catalysts by amine titration using Hammett indicators and FT-IR study of pyridine adsorption // Turk. J. Chem. 1999. V. 23. № 3. P. 319–328.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library