RAS Chemistry & Material ScienceНефтехимия Petroleum Chemistry

  • ISSN (Print) 0028-2421
  • ISSN (Online) 3034-5626

Зависимость конверсии циклогексана в н-гексан на нанесенных катализаторах Rh/CeXZr1–xO2 от состава носителя

PII
S30345626S0028242125010062-1
DOI
10.7868/S3034562625010062
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 1
Pages
67-74
Abstract
Нефтехимия, Зависимость конверсии циклогексана в н-гексан на нанесенных катализаторах Rh/CeXZr1–xO2 от состава носителя
Keywords
Date of publication
29.12.2025
Year of publication
2025
Number of purchasers
0
Views
20

References

  1. 1. Kartavova K.E., Mashkin M.Y., Kostin M.Y., Finashina E.D., Kalmykov K.B., Kapustin G.I., Pribytkov P.V., Tkachenko O.P., Mishin I.V., Kustov L.M., Kustov A.L. Rhodium-based catalysts: an impact of the support nature on the catalytic cyclohexane ring opening // Nanomaterials. 2023. V. 13. № 936. P. 1–19. https://doi.org/10.3390/nano13050936
  2. 2. Moraes R., Thomas K., Thomas S., Van Donk S., Grasso G., Gilson J.P., Houalla M. Ring opening of decalin and methylcyclohexane over alumina-based monofunctional WO3/Al2O3 and Ir/Al2O3 catalysts // J. of Catalysis. 2012. V. 286. P. 62–77. https://doi.org/10.1016/j.jcat.2011.10.014
  3. 3. Guan C., Zhai J., Han D. Cetane number prediction for hydrocarbons from molecular structural descriptors based on active subspace methodology // Fuel. 2019. V. 249. P. 1–7. https://doi.org/10.1016/j.fuel.2019.03.092
  4. 4. Wei Y.J., Zhang Y.J., Zhu X.D., Gu H.M., Zhu Z.Q., Liu S.H., Sun X.Y., Jiang X.L. Effects of diesel hydrocarbon components on cetane number and engine combustion and emission characteristics. // Applied Sciences. 2022. V. 12. P. 1–17. https://doi.org/10.3390/app12073549
  5. 5. Masloboishchikova O.V., Vasina T.V., Khelkovskaya-Sergeeva E.G., Kustov L.M., Zeuthen P. Cyclohexane transformations over metal oxide catalysts. 1. Effect of the nature of metal and support on the catalytic activity in cyclohexane ring opening // Russ. Chem. Bull. 2002. V. 51. P. 237–241.
  6. 6. Vasina T.V., Masloboishchikova O.V., Khelkovskaya-Sergeeva E.G., Kustov L.M., Zeuthen P.. Cyclohexane transformations over metal oxide catalysts. 2. Selective cyclohexane ring opening to form n-hexane over mono- and bimetallic rhodium catalysts // Russ. Chem. Bull. 2002. V. 51. P. 242–245.
  7. 7. Kustov L.M., Stakheev A.Y., Vasina T.V., Masloboishchikova O.V., Khelkovskaya-Sergeeva E.G., Zeuthen P. Dual-function Catalysts for Ring opening of cyclic Compounds. Elsevier Masson SAS, 2001. P. 307–314. https://doi.org/10.1016/s0167-2991 (01)80043-4
  8. 8. McVicker G.B., Daage M., Touvelle M.S., Hudson C.W., Klein D.P., Baird W.C., Cook B.R., Chen J.G., Hantzer S., Vaughan D.E.W., Ellis E.S., Feeley O.C. Selective ring opening of naphthenic molecules // J. of Catalysis. 2002. V. 210. P. 137–148. https://doi.org/10.1006/jcat.2002.3685
  9. 9. Blanco E., Piccolo L., Laurenti D., di Felice L., Catherin N., Lorentz C., Geantet C., Calemma V. Effect of H2S on the mechanisms of naphthene ring opening and isomerization over Ir/NaY: A comparative study of decalin, perhydroindan and butylcyclohexane hydroconversions // Applied Catalysis A: General. 2018. V. 550. P. 274–283. https://doi.org/10.1016/j.apcata.2017.11.020
  10. 10. Vicerich M.A., Benitez V.M., Especel C., Epron F., Pieck C.L. Influence of iridium content on the behavior of Pt-Ir/Al2O3 and Pt-Ir/TiO2 catalysts for selective ring opening of naphthenes // Applied Catalysis A: General. 2013. V. 453. P. 167–174. https://doi.org/10.1016/j.apcata.2012.12.015.
  11. 11. Zhu X., Zhou Q., Xia Y., Wang J., Chen H., Xu Q., Liu J., Feng W., Chen S. Preparation and characterization of Cu-doped TiO2 nanomaterials with anatase/rutile/brookite triphasic structure and their photocatalytic activity // J. of Materials Science: Materials in Electronics. 2021. V. 32. P. 21511–21524. https://doi.org/10.1007/s10854-021-06660-5
  12. 12. Zhu X., Wang J., Yang D., Liu J., He L., Tang M., Feng W., Wu X. Fabrication, characterization and high photocatalytic activity of Ag-ZnO heterojunctions under UV-visible light // RSC Advances. 2021. V. 11. P. 27257–27266. https://doi.org/10.1039/d1ra05060e
  13. 13. Mouli K.C., Choudhary O., Soni K., Dalai A.K. Improvement of cetane number of LGO by ring opening of naphthenes on Pt/Al-SBA-15 catalysts // Catalysis Today. 2012. V. 198. P. 69–76. https://doi.org/10.1016/j.cattod.2012.01.027
  14. 14. Kubička DKumar., N., Mäki-Arvela P., Tiitta M., Niemi V., Salmi T., Murzin D.Y. Ring opening of decalin over zeolites: I. Activity and selectivity of proton-form zeolites // J. of Catalysis. 2004. V. 222. P. 65–79. https://doi.org/10.1016/j.jcat.2003.10.027
  15. 15. Corma A., González-Alfaro V., Orchillés A.V. Decalin and tetralin as probe molecules for cracking and hydrotreating the light cycle oil // J. of Catalysis. 2001. V. 200. P. 34–44. https://doi.org/10.1006/jcat.2001.3181
  16. 16. Mostad H.B., Riis T.U., Ellestad O.H. Catalytic cracking of naphthenes and naphtheno-aromatics in fixed bed micro reactors // Applied Catalysis. 1990. V. 63. P. 345–364. https://doi.org/10.1016/S0166-9834 (00)81724-8
  17. 17. Mostad H.B., Riis T.U., Ellestad O.H. Shape selectivity in Y-zeolites. Catalytic cracking of decalin-isomers in fixed bed micro reactors // Applied Catalysis. 1990. V. 58. P. 105–117. https://doi.org/10.1016/S0166-9834 (00)82281-2
  18. 18. Kartavova K.E., Mashkin Yu.M., Kalmykov K.B., Kapustin G.I., Tkachenko O.P., Mishin I.V., Dunaev S.F., Kustov A.L. Influence of the nature of promoted zirconium supports on the catalytic behavior of Rh-based catalysts in the reaction of cyclohexane ring opening to n-hexane // Russ. J. of Physic. Chemistry A. 2024. V. 98. P. 543–551. https://doi.org/10.1134/S0036024424040125
  19. 19. Wan J., Lin J., Guo X., Wang T., Zhou R. Morphology effect on the structure-activity relationship of Rh/CeO2–ZrO2 catalysts // Chem. Engineering J. 2019. V. 368. P. 719–729. https://doi.org/10.1016/j.cej.2019.03.016
  20. 20. Orlik S.N., Struzhko V.L., Mironyuk T.V., Tel’biz G.M. Effect of Acidity of the surface on the activity of rhodium promoted zirconium oxide catalysts in the reduction of NO by hydrocarbons // Theor. and Exper. Chemistry. 2001. V. 37. P. 311–314. https://doi.org/10.1023/A:1013863117597
  21. 21. Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) // Pure and Applied Chemistry. 2015. V. 87. P. 1051–1069. https://doi.org/10.1515/pac-2014-1117
  22. 22. Patterson A.L. The Scherrer formula for X-ray particle size determination // Phys. Review. 1939. V. 56. P. 978–982. https://doi.org/10.1103/PhysRev.56.978
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library