RAS Chemistry & Material ScienceНефтехимия Petroleum Chemistry

  • ISSN (Print) 0028-2421
  • ISSN (Online) 3034-5626

ЗАМЕЩЕННЫЕ ЦЕОЛИТЫ ZSM-22: СРАВНЕНИЕ ФИЗИКО-ХИМИЧЕСКИХ И КАТАЛИТИЧЕСКИХ СВОЙСТВ (ОБЗОР)

PII
S30345626S0028242125040014-1
DOI
10.7868/S3034562625040014
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume 65 / Issue number 4
Pages
251-282
Abstract
В обзоре проведен сравнительный анализ литературы по синтезу, физико-химическим и каталитическим свойствам замещенных цеолитов ZSM-22. Физико-химические характеристики Ce-, Fe-, Ga-, B- и V-замещенных образцов цеолитов ZSM-22 сравнены с характеристиками исходного аналога (на основании рентгенофазового анализа, просвечивающей электронной микроскопии, сканирующей электронной микроскопии, низкотемпературной адсорбции–десорбции азота, ИК-спектроскопии адсорбированного пиридина, УФ-спектроскопии, рентгенофазовой электронной спектроскопии, термопрограммируемой десорбции аммиака и др.). Показана возможность использования замещенных цеолитов ZSM-22 в реакциях гидроизомеризации длинноцепочечных углеводородов, изомеризации бугенов, превращения метанола в олефины, разложения закиси азота, диспропорционирования этилбензола и гидроксилирования аренов до фенолов.
Keywords
Date of publication
12.08.2025
Year of publication
2025
Number of purchasers
0
Views
27

References

  1. 1. Sai Prasad P.S., Bae J.W., Kang S.-H., Lee Y.-J., Jun K.-W. Single-step synthesis of DME from syngas on Cu-ZnO-Al2O3/zeolite bifunctional catalysts: the superiority of ferrierite over the other zeolites // Fuel Process. Technol. 2008. V. 89. № 12. P. 1281–1286. http://dx.doi.org/10.1016/j.fuproc.2008.07.014 https://europe.iza-structure.org/IZA-SC/framework. php? ID=239
  2. 2. Del Campo P., Olsbye U., Lillerud K.P., Svelle S., Bea­to P. Impact of post-synthetic treatments on uni­di­rectional H-ZSM‑22 zeolite catalyst: towards im­proved clean MTG catalytic process // Catal. Today. 2018. V. 299. P. 135–145. https://doi.org/10.1016/j.cattod.2017.05.011
  3. 3. Gao S.-B., Zhao Z., Lu X.-F., Chi K.-B., Duan A.J., Liu Y.-F., Meng X.-B., Tan M.-W., Yu H.-Y., Shen Y.-G., Li M.-C. Hydrocracking diversity in n-dodecane iso­merization on Pt/ZSM‑22 and Pt/ZSM‑23 catalysts and their catalytic performance for hydrodewaxing of lube base oil // Pet. Sci. 2020. V. 17. P. 1752–1763. https://doi.org/10.1007/s12182-020-00500-7
  4. 4. Redekop E.A., Lazzarinia A., Bordigaa S., Olsbey U. A temporal analysis of products (TAP) study of C2-C4 alkene reactions with a well-defined pool of methylating species on ZSM‑22 zeolite // J. Catal. 2020. V. 385. P. 300–312. https://doi.org/10.1016/j.jcat.2020.03.020
  5. 5. Liu Z., Chu Y., Tang X., Huang L., Li G., Yi X., Zheng A. Diffusion dependence of the dual-cycle mechanism for MTO reaction inside ZSM‑12 and ZSM‑22 // J. Phys. Chem. C. 2017. V. 121. № 41. P. 22872–22882. https://doi.org/10.1021/acs.jpcc.7b07374
  6. 6. Valyocsik E.W. Synthesis of zeolite ZSM‑22. 1984. US Patent No 4902406. https://patentimages.storage.googleapis.com/b5/79/a5/6c83073872b042/US4902406.pdf
  7. 7. Verdujin J.P., Martens L.R.M. ZSM‑22 zeolite. US Patent No 5783168. https://patentimages.storage.googleapis.com/a9/e3/ff/dfe25bc56bcbc62b/US5783168.pdf
  8. 8. de Sousa L.V., Ribeiro T.R.S., da Silva B.J.B., Quin­tela P.H.L., Alencar S.L., de Pacheco Filha J.G.A., de Sil­va A.O.S. Different approaches to the synthesis of ZSM‑22 zeolite with application in n-heptane cra­cking // Res. Soc. Develop. 2022. V. 11. № 3. P. 1–17. http://dx.doi.org/10.33448/rsd-v11i3.26070
  9. 9. Nishiyama N., Ueyama K., Matsukata M. Synthesis of defect-free zeolite-alumina composite membranes by a vapor-phase transport method // Micropor. Mater. 1996. V. 7. № 6. P. 299–308. https://doi.org/10.1016/S0927-6513 (96)00053-3
  10. 10. Sato S., Yu-u Y., Yahiro H., Mizuno N., Iwamoto M. Cu-ZSM‑5 zeolite as highly active catalyst for removal of nitrogen monoxide from emission of diesel engines // Appl. Catal. 1991. V. 70. № 1. P. L1–L5. https://doi.org/10.1016/S0166-9834 (00)84146-9
  11. 11. Noreña-Franco L., Hernandez-Perez I., Aguilar-Pliego J., Maubert-Franco A. Selective hydroxylation of phenol employing Cu–MCM‑41 catalysts // Catal. Today. 2002. V. 75. № 1–4. P. 189–195. https://doi.org/10.1016/S0920-5861 (02)00067-6
  12. 12. Weitkamp J. Isomerization of long-chain n-alkanes on a Pt/CaY zeolite catalyst // Ind. Eng. Chem. Prod. Res. Dev. 1982. V. 21. № 4. P. 550–558. https://doi.org/10.1021/i300008a008
  13. 13. Mériaudeau P., Tuan V.A., Nghiem V.T., Lai S.Y., Hung L.N., Naccache C. SAPO‑11, SAPO‑31, and SAPO‑41 molecular sieves: synthesis, characterization, and catalytic properties in n-octane hydroisomeriza­tion // J. Catal. 1982. V. 169. № 1. P. 55–66. https://doi.org/10.1006/jcat.1997.1647
  14. 14. Parmar S., Pant K.K., John M., Kumar K., Pal S.M., Newalkar B.L. Hydroisomerization of n-hexadecane over Pt/ZSM‑22 framework: Effect of divalent cation exchange // J. Mol. Catal. A: Chem. 2015. V. 404–405. P. 47–56. https://doi.org/10.1016/j.molcata.2015.04.012
  15. 15. Wu X., Qiu M., Chen X., Yu G., Yu X., Yang Ch., Sun J., Liu Z., Sun Y. Enhanced n-dodecane hydro­isomerization performance by tailoring acid sites on bifunctional Pt/ZSM‑22 via alkaline treatment // New J. Chem. 2018. V. 42. P. 111–117. https://doi.org/10.1039/C7NJ03417B
  16. 16. Liu S.Y., Zhang L., Zhang L., Zhang H.K., Ren J., Fun­ction of well-established mesoporous layers of recrystallized ZSM‑22 zeolites in the catalytic per­formance of n-alkane isomerization // New J. Chem. 2020. V. 44. P. 4744–4754. https://doi.org/10.1039/C9NJ06273D
  17. 17. Liu S.Y., Ren J., Zhang H.K., Lv E.J., Yang Y., Li Y.W. Synthesis, characterization and isomerization performance of micro/mesoporous materials based on H-ZSM‑22 zeolite // J. Catal. 2016. V. 335. P. 11–23. https://doi.org/10.1016/j.jcat.2015.12.009
  18. 18. Chi K., Zhao Zh., Tian Zh., Hu Sh., Yan L., Li T., Wang B., Meng X., Gao Sh., Tan M., Liu Y. Hydroisomerization performance of platinum sup­ported on ZSM‑22/ZSM‑23 intergrowth zeolite cata­lyst // Pet. Sci. 2013. V. 10. P. 242–250. https://doi.org/10.1007/s12182-013-0273-6
  19. 19. Burton A.W., Zones S.I., Rea T., Chan I.Y. Preparation and characterization of SSZ‑54: A family of MTT/TON intergrowth materials // Micropor. Mesopor. Mater. 2010. V. 132. № 1–2. P. 54–59. https://doi.org/10.1016/j.micromeso.2009.10.023
  20. 20. Munusamy K., Das R.K., Ghosh S., Kishore Kumar S.A., Pai S., Newalkar B.L. Synthesis, characterization and hydroisomerization activity of ZSM‑22/23 intergrowth zeolite // Micropor. Mesopor. Mater. 2018. V. 266. P. 141–148. https://doi.org/10.1016/j.micromeso.2018.02.044
  21. 21. Wang Q., Sim L.B., Xie J., Ye S., Fu J., Wang J., Zhang N., Zheng J., Chen B. Promotion effect of cerium in ZSM‑22 zeolite on the hydroisomerization of n-hexadecane // Micropor. Mesopor. Mater. 2023. V. 360. ID 112720. https://doi.org/10.1016/j.micromeso.2023.112720
  22. 22. Liu S.Y., Ren J., Zhu S., Zhang H.K., Lv E.J., Xu J., Li Y.W. Synthesis and characterization of the Fe-sub­stituted ZSM‑22 zeolite catalyst with high n-dodecane isomerization performance // J. Catal. 2015. V. 330. P. 485–496. https://doi.org/10.1016/j.jcat.2015.07.027
  23. 23. Liu S.Y., He Y.R., Zhang H.K., Chen Z.Q., Lv E.J., Ren J., Yun Y.F., Wen X.D., Li Y.W. Design and syn­thesis of Ga-doped ZSM‑22 zeolites as highly selective and stable catalysts for n-dodecane isomerization // Catal. Sci. Technol. 2019. V. 9. P. 2812–2827. https://doi.org/10.1039/C9CY00414A
  24. 24. Singh A.P., Reddy K.R. Synthesis, characterization, and catalytic activity of gallosilicate analogs of zeolite ZSM‑22 // Zeolites. 1994. V. 14. № 4. P. 290–294. https://doi.org/10.1016/0144-2449 (94)90098-1
  25. 25. Verboekend D., Thomas K., Milina M., Mitchell S., Pérez-Ramirez., Gilson J.-P. Towards more efficient monodimensional zeolite catalysts: n-alkane hydro-isomerization on hierarchical ZSM‑22 // Catal. Sci. Technol. 2011. V. 1. P. 1331–1335. https://doi.org/10.1039/C1CY00240F
  26. 26. Dooley K.M., Chang C., Price G.L. Effects of pre­treat­ments on state of gallium and aromatization activity of gallium/ZSM‑5 catalysts // Appl. Catal. A: Gen. 1992. V. 84. № 1. P. 17–30. https://doi.org/10.1016/0926-860X (92)80336-B
  27. 27. Masih D., Kobayashi T., Baba T. Hydrothermal syn­thesis of pure ZSM‑22 under mild conditions // Chem. Commun. 2007. № 31. P. 3303–3305. https://doi.org/10.1039/B704787H
  28. 28. Chandwadkar A.J., Bhat R.N., Ratnasamy P. Synthesis of iron-silicate analogs of zeolite mordenite // Zeolites. 1991. V. 11. № 1. P. 42–47. https://doi.org/10.1016/0144-2449 (91)80354-3
  29. 29. Luo Y., Wang Z., Jin S., Zhang B., Sun H., Yuan X., Yang W. Synthesis and crystal growth mechanism of ZSM‑22 zeolite nanosheets // CrystEngCom, 2016. V. 18. № 30. P. 5611–5615. https://doi.org/10.1039/C6CE00773B
  30. 30. Kumar N., Lindfors L.E., Byggningsbacka R. Synthesis and characterization of H-ZSM‑22, Zn-H-ZSM‑22 and Ga-H-ZSM‑22 zeolite catalysts and their catalytic activity in the aromatization of n-butane // Appl. Catal. A: Gen. 1996. V. 139. № 1–2. P. 189–199. https://doi.org/10.1016/0926-860X (95)00327-4
  31. 31. Zhou H., Zhu W., Shi L., Liu H., Liu S.P., Xu S.T., Ni Y., Liu Y., Li L., Liu Z. Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate // Catal. Sci. Technol. 2015. V. 5. P. 1961–1968. https://doi.org/10.1039/C4CY01580K
  32. 32. Li Y., Huang S.Y., Cheng Z.Z., Cai K., Li L.D., Milan E., Lv J., Wang Y., Sun Q., Ma X.B. Promoting the ac­tivity of Ce-incorporated MOR in dimethyl ether car­bonylation through tailoring the distribution of Brøn­sted acids // Appl. Catal. B: Environ. 2019. V.  56. ID 117777. https://doi.org/10.1016/j.apcatb.2019.117777
  33. 33. Calis G., Frenken P., de Boer F., Swolfs A., Hef­ni M.A. Synthesis and spectroscopic studies of Fe3+ sub­stituted ZSM‑5 zeolite // Zeolites. 1987. V. 7. № 4. P. 319–326. https://doi.org/10.1016/0144-2449 (87)90034-0
  34. 34. Loeffler E., Peuker C., JerSchkewitz. The influence of dealumination on the infrared spectra of H-ZSM‑5 // Catal. Today. 1988. V. 3. № 5. P. 415–420. https://doi.org/10.1016/0920-5861 (88)87023-8
  35. 35. Lanh H.D., Tuan V.A., Kosslick H., Parlitz B., Fricke R., Vólter J. n-Hexane aromatization on synthetic gallo­silicates with MFI structure // Appl. Catal. A: Gen. 1993. V. 103. № 2. P. 205–222. https://doi.org/10.1016/0926-860X (93)85052-Q
  36. 36. Wu Y.J., Wang J., Liu P., Zhang W., Gu J., Wang X.J. Framework-substituted lanthanide MCM‑22 zeolite: synthesis and characterization // J. Am. Chem. Soc. 2010. V. 132. № 51. P. 17989–17991. https://doi.org/10.1021/ja107633j
  37. 37. Anandan C., Bera P. XPS studies on the interaction of CeO2 with silicon in magnetron sputtered CeO2 thin films on Si and Si3N4 substrates // Appl. Surf. Sci. 2013. V. 283. P. 297–303. https://doi.org/10.1016/j.apsusc.2013.06.104
  38. 38. Inui T., Nagata H., Takeguchi T., Iwamoto S., Matsu­da H., Inoue M. Environments of iron in Fe-silicates synthesized by the rapid crystallization method // J. Catal. 1993. V. 139. № 2. P. 482–489. https://doi.org/10.1006/jcat.1993.1042
  39. 39. Hensen E.J.M., Zhu Q., Janssen R.A.J., Magusin P.C.M.M., Kooyman P.J., van Santen R.A. Selective oxidation of benzene to phenol with nitrous oxide over MFI zeolites: 1. On the role of iron and aluminum // J. Catal. 2005. V. 233. № 1. P. 123–135. https://doi.org/10.1016/j.jcat.2005.04.009
  40. 40. Bordiga S., Buzzoni R., Geobaldo F., Lamberti C., Gia­mello E., Zecchina A., Leofanti G., Petrini G., Tozzo­la G., Vlaic G. Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods // J. Catal. 1996. V. 158. № 2. P. 486–501. https://doi.org/10.1006/jcat.1996.0048
  41. 41. Fejes P., Nagy J.B., Halász J., Oszkó A. Heat-treatment of isomorphously substituted ZSM‑5 zeolites and its structural consequences: An X-ray diffraction,29Si MAS-NMR, XPS and FT-IR spectroscopy study // Appl. Catal. A: Gen. 1998. V. 175. № 1–2. P. 89–104. https://doi.org/10.1016/S0926–860X (98)00212-9
  42. 42. Zhang H., Chu L., Xiao Q., Zhu L., Yang Ch., Meng X., Xiao F.-S. One-pot synthesis of Fe-Beta zeolite by an organotemplate-free and seed-directed route // J. Mater. Chem. A. 2013. V. 1. P. 3254–3257. https://doi.org/10.1039/C3TA01238G
  43. 43. Yang W.C., Li C.F., Wang H.Y., Li X.Y., Zhang W.I., Li H.L. Cobalt doped ceria for abundant storage of surface-active oxygen and efficient elemental mercury oxidation in coal combustion flue gas // Appl. Catal. B: Environ. 2018. V. 239. P. 233–244. https://doi.org/10.1016/j.apcatb.2018.08.014
  44. 44. Qing M., Yang Y., Wu B., Xu J., Zhang C., Gao P., Li Y. Modification of Fe–SiO2 interaction with zirconia for iron-based Fischer–Tropsch catalysts // J. Catal. 2011. V. 279. № 1. P. 111–122. https://doi.org/10.1016/j.jcat.2011.01.005
  45. 45. Seyma H., Wang D., Soma M. X-ray photoelectron microscopic imaging of the chemical bonding state of Si in a rock sample // Surf. Interface Anal. 2004. V. 36. № 7. P. 609–612. https://doi.org/10.1002/sia.1784
  46. 46. Kumar R., Ratnasamy P. Isomorphous substitution of iron in the framework of zeolite ZSM‑23 // J. Catal. 1990. V. 121. № 1. P. 89–98. https://doi.org/10.1016/0021-9517 (90)90219-A
  47. 47. Gawande M.B., Deshpande S.S., Sonavane S.U., Jaya­ram R.V. A novel sol–gel synthesized catalyst for Friedel–Crafts benzoylation reaction under solvent-free conditions // J. Mol. Catal. A: Chem. 2005. V. 241. № 1–2. P. 151–155. https://doi.org/10.1016/j.molcata.2005.06.069
  48. 48. Zhang F., Du N., Li H., Liang X., Hou W. Sorption of Cr(VI) on Mg-Al-Fe layered double hydroxides synthesized by a mechanochemical method // RSC Adv. 2014. V. 4. P. 46823–46830. https://doi.org/10.1039/C4RA07553F
  49. 49. Diaz Y., Melo L., Mediavilla M., Albornoz A., Brito J.L. Characterization of bifunctional Pt/H[Ga]ZSM5 and Pt/H[Al]ZSM5 catalysts: II. Evidences of a Pt–Ga interaction // J. Mol. Catal. A: Chem. 2005. V. 227. № 1–2. P. 7–15. https://doi.org/10.1016/j.molcata.2004.09.050
  50. 50. Price G.L., Kanazirev V. Ga2O3/HZSM‑5 propane aro­ma­tization catalysts: Formation of active centers via solid-­state reaction // J. Catal. 1990. V. 126. P. 267–278. https://doi.org/10.1016/0021-9517 (90)90065-R
  51. 51. Li M., Zhou Y., Oduro I.N., Fang Y. Comparative study on the catalytic conversion of methanol and propanal over Ga/ZSM‑5 // Fuel. 2016. V. 168. P. 68–75. https://doi.org/10.1016/j.fuel.2015.11.076
  52. 52. Kim M.Y., Lee K., Choi M. Cooperative effects of se­condary mesoporosity and acid site location in Pt/SAPO‑11 on n-dodecane hydroisomerization selec­tivity // J. Catal. 2014. V. 319. P. 232–238. https://doi.org/10.1016/j.jcat.2014.09.001
  53. 53. Yang X., Ma H., Xu Z., Xu Y., Tian Z., Lin L. Hydro­isomerization of n-dodecane over Pt/MeAPO‑11 (Me = Mg, Mn, Co or Zn) catalysts // Catal. Commun. 2007. V. 8. № 8. P. 1232–1238. https://doi.org/10.1016/j.catcom.2006.11.005
  54. 54. Segawa K., Hiroyasu T. Highly selective methylamine synthesis over modified mordenite catalysts // J. Catal. 1991. V. 131. № 2. P. 482–490. https://doi.org/10.1016/0021-9517 (91)90280-H
  55. 55. Yuan S.P., Wang J.G., Li Y.W., Peng S.Y. Theoretical studies on the properties of acid site in isomorphously substituted ZSM‑5 // J. Mol. Catal. A: Chem. 2002. V. 178. № 1–2. P. 267–274. https://doi.org/10.1016/S1381-1169 (01)00335-1
  56. 56. Chatterjee A., Iwasaki T., Ebina T., Miyamoto A. Theo­retical studies on the properties of acid site in isomorphously substituted ZSM‑5 // Micropor. Mesopor. Mater. 1998. V. 21. № 4–6. P. 421–428. https://doi.org/10.1016/S1387-1811 (98)00051-1
  57. 57. Matsuura H., Katada N., Niwa M. Additional acid site on HZSM‑5 treated with basic and acidic solutions as detected by temperature-programmed desorption of ammonia // Micropor. Mesopor. Mater. 2003. V. 66. № 1–2. P. 283–296. https://doi.org/10.1016/j.micromeso.2003.09.020
  58. 58. Challoner R., Harris R.K., Barri S.A.I., Taylor M.J. An investigation of Brönsted acidity in gallosilicate-MFI (Ga-ZSM‑5) // Zeolites. 1995. V. 11. № 8. P. 827–831. https://doi.org/10.1016/S0144-2449 (05)80063-6
  59. 59. Inui T., Matsuba K., Tanaka Y. Comprehensive des­cription of the acidic property of effective metallo­sili­cate catalysts by computer simulation // Catal. Today. 1995. V. 23. № 4. P. 317–323. https://doi.org/10.1016/0920-5861 (94)00144-Q
  60. 60. Guo L., Bao X., Fan Y., Shi G., Liu H., Bai D. Impact of cationic surfactant chain length during SAPO‑11 molecular sieve synthesis on structure, acidity, and n-octane isomerization to di-methyl hexanes // J. Catal. 2012. V. 294. P. 161–170. https://doi.org/10.1016/j.jcat.2012.07.016
  61. 61. Zeng S., Blanchard J., Breysse M., Shi Y., Shu X., Nie H., Li D. Post-synthesis alumination of SBA‑15 in aqueous solution: A versatile tool for the preparation of acidic Al-SBA‑15 supports // Micropor. Mesopor. Mater. 2005. V. 85. № 3. P. 297–304. https://doi.org/10.1016/j.micromeso.2005.06.031
  62. 62. Camblor M.A., Pe rez-Pariente J., Forne V. Syn­the­sis and characterization of gallosilicates and galloaluminosilicates isomorphous to zeolite Beta // Zeolites. 1992. V. 12. № 3. P. 280–286. https://doi.org/10.1016/S0144-2449 (05)80296-9
  63. 63. Strodel P., Neyman K.M., Knözinger H., Rösch N. Acidic properties of [Al], [Ga] and [Fe] isomorphously sub­stituted zeolites. Density functional model cluster study of the complexes with a probe CO molecule // Chem. Phys. Lett. 1995. V. 240. № 5–6. P. 547–552. https://doi.org/10.1016/0009-2614 (95)00583-P
  64. 64. Knaeble W., Carr R.T., Iglesia E. Mechanistic inter­pretation of the effects of acid strength on alkane isomerization turnover rates and selectivity // J. Catal. 2014. V. 319. P. 283–296. https://doi.org/10.1016/j.jcat.2014.09.005
  65. 65. Chen Y., Li C., Chen X., Liu Y., Tsang C.-W., Liang C. Synthesis and characterization of iron-substituted ZSM‑23 zeolite catalysts with highly selective hydroisomerization of n-hexadecane // Ind. Eng. Chem. Res. 2018. V. 57. № 41. P. 13721–13730. https://doi.org/10.1021/acs.iecr.8b03806
  66. 66. Noh G., Shi Z., Zones S.I., Iglesia E. Isomerization and β-scission reactions of alkanes on bifunctional metal-acid catalysts: consequences of confinement and diffusional constraints on reactivity and selectivity // J. Catal. 2018. V. 368. P. 389–410. https://doi.org/10.1016/j.jcat.2018.03.033
  67. 67. Wang G., Liu Q., Su W., Li X., Jiang Z., Fang X., Han C., Li C. Hydroisomerization activity and selec­ti­­vity of n-do­decane over modified Pt/ZSM‑22 cata­lysts // Appl. Catal. A: Gen. 2008. V. 335. № 1. P. 20–27. https://doi.org/10.1016/j.apcata.2007.11.002
  68. 68. Jamil A.K., Muraza O., Miyake K., Ahmed M.H.M., Yamani Z.H., Hirota Y., Nishiyama N. Stable pro­duc­tion of gasoline-ranged hydrocarbons from di­methyl ether over iron-modified ZSM‑22 zeolite // Energу Fuels. 2018. V. 32. № 11. P. 11796–11801. https://doi.org/10.1021/acs.energyfuels.8b03008
  69. 69. Jamil A.K., Muraza O., Yoshioka M., Al-Amer A., Yamani Z.H., Yokoi T. Selective production of pro­py­lene from methanol conversion over nanosized ZSM‑22 zeolites // Ind. Eng. Chem. Res. 2014. V. 53. № 50. P. 19498–19505. https://doi.org/10.1021/ie5038006
  70. 70. Jamil A.K., Nishitoba T., Ahmed M.H.M., Yamani Z.H., Yokoi T., Muraza O. Stable boron-modified ZSM‑22 zeolite catalyst for selective production of propylene from methanol // Energy Fuels. 2019. V. 33. № 12. P. 12679–12684. https://doi.org/10.1021/acs.energyfuels.9b03009
  71. 71. Wang S., Li S., Zhang L., Qin Z., Dong M., Li J., Wang J., Fan W. Insight into the effect of incorpo­­ra­tion of boron into ZSM‑11 on its catalytic performance for conversion of methanol to olefins // Catal. Sci. Technol. 2017. V. 7. № 20. P. 4766–4779. https://doi.org/10.1039/C7CY01428G
  72. 72. Zhu Q., Kondo J.N., Yokoi T., Setoyama T., Yamagu­chi M., Takewaki T., Domen K., Tatsum T. The in­fluence of acidities of boron- and aluminium-con­taining MFI zeolites on co-reaction of methanol and ethene // Phys. Chem. Chem. Phys. 2011. V. 13. № 32. P. 14598–14605. https://doi.org/10.1039/C1CP20338J
  73. 73. Chen J., Liang T., Li J., Wang S., Qin Z., Wang P., Huang L., Fan W., Wang J. Regulation of framework aluminum siting and acid distribution in H-MCM‑22 by boron incorporation and its effect on the catalytic performance in methanol to hydrocarbons // ACS Catal. 2016. V. 6. № 4. P. 2299–2313. https://doi.org/10.1021/acscatal.5b02862
  74. 74. Jamil A.K., Muraza O., Ahmed M.H., Zainalabdeen A., Muramoto K., Nakasaka Y., Yamani Z.H., Yoshika­wa T., Masuda T. Hydrothermally stable acid-modified ZSM‑22 zeolite for selective propylene production via steam-assisted catalytic cracking of n-hexane // Micropor. Mesopor. Mater. 2018. V. 260. P. 30–39. https://doi.org/10.1016/j.micromeso.2017.10.016
  75. 75. Ma M., Huang X., Zhan E., Zhou Y., Xue H., Shen W. Synthesis of mordenite nanosheets with shortened channel lengths and enhanced catalytic activity // J. Mater. Chem. A. 2017. V. 5. № 19. P. 8887–8891. https://doi.org/10.1039/C7TA02477K
  76. 76. Hu Z., Zhang H., Wang L., Zhang H., Zhang Y., Xu H., Shen W., Tang Y. Highly stable boron-modified hierarchical nanocrystalline ZSM‑5 zeolite for the methanol to propylene reaction // Catal. Sci. Technol. 2014. V. 4. № 9. P. 2891–2895. https://doi.org/10.1039/C4CY00376D
  77. 77. Asensi M.A., Corma A., Martinez A., Derewinski M., Krysciak J., Tamhankar S.S. Isomorphous substitution in ZSM‑22 zeolite. The role of zeolite acidity and crystal size during the skeletal isomerization of n-butene // Appl. Catal. A: Gen. 1998. V. 174. № 1–2. P. 163–175. https://doi.org/10.1016/S0926-860X (98)00166-5
  78. 78. Kasture M., Krysciak J., Matachowski L., Machej T., Derewifiski M. Nitrous oxide decomposition over iron exchanged [AI]- and [Fe]-ZSM‑22 // Stud. Surf. Sci. Catal. 1999. V. 125. P. 579–586. https://doi.org/10.1016/S0167-2991 (99)80262-6
  79. 79. Kapteijn F., Rodriguez-Mirasol J., Moulijn J.A. Hete­ro­geneous catalytic decomposition of nitrous oxide // Appl. Catal. B: Environ. 1996. V. 9. № 1–4. P. 25–64. https://doi.org/10.1016/0926-3373 (96)90072-7
  80. 80. Kumar R., Patnasamy P. Isomerization and formation of xylenes over ZSM‑22 and ZSM‑23 zeolites // J. Catal. 1989. V. 116. № 2. P. 440–448. https://doi.org/10.1016/0021-9517 (89)90110-3
  81. 81. Kokotailo G.T., Schlenker J.L., Dwyer F.G., Valyo­csik E.W. The framework topology of ZSM‑22: a high silica zeolite // Zeolites 1985. V. 5. № 6. P. 349–351. https://doi.org/10.1016/0144-2449 (85)90122-8
  82. 82. Kustov L.M., Kazansky V.B., Raatnasamy P. Spec­tro­sco­pic investigation of iron ions in a novel ferrisilicate pentasil zeolite // Zeolites. 1987. V. 7. № 1. P. 79–83. https://doi.org/10.1016/0144-2449 (87)90125-4
  83. 83. Szostak R., Thomas T.L. Reassessment of zeolite and molecular sieve framework infrared vibrations // J. Catal. 1986. V. 101. № 2. P. 549–552. https://doi.org/10.1016/0021-9517 (86)90286-1
  84. 84. Montes A., Perot G., Guisnet M. Cracking of n-hexane on Na, H-mordenite: Coke poisoning // React. Kinet. Catal. Lett. 1985. V. 29. P. 79–84. https://doi.org/10.1007/BF02067952
  85. 85. Chu C.T.W., Chang C.D. Isomorphous substitution in zeolite frameworks. 1. Acidity of surface hydroxyls in [B]-, [Fe]-, [Ga]-, and [Al]-ZSM‑5 // J. Phys. Chem. 1985. V. 89. № 9. P. 1569–1571. https://doi.org/10.1021/j100255a005
  86. 86. Yuan C., Liang Y., Hernandez T., Berriochoa A., Houl K.N., Siegel D. Metal-free oxidation of aromatic carbon-hydrogen bonds through a reverse-rebound mechanism // Nature. 2013. V. 499. P. 192–196. https://doi.org/10.1038/nature12284
  87. 87. Qian W., Yan D., Chen Y., Wang T., Xiong F., Wei W., Lu Y., Sun W.-Y., Li J.J., Zhao J. A redox-neutral cate­chol synthesis // Nat. Commun. 2017. V. 8. ID 14227. https://doi.org/10.1038/ncomms14227
  88. 88. Niwa S., Muthusamy E., Nair J., Raj A., Itoh N., Shoji H., Namba T., Mizukami F. A one-step conversion of ben­zene to phenol with a palladium membrane // Science. 2002. V. 295. № 5552. P. 105–107. https://doi.org/10.1126/science.1066527
  89. 89. Shoji O., Yanagisawa S., Stanfield J.K., Suzuki K., Cong Z., Sugimoto H., Shiro Y., Watanabe Y. Direct hydroxylation of benzene to phenol by cytochrome P450BM3 triggered by amino acid derivatives // Angew. Chem. Int. Ed. 2017. V. 56. № 35. P. 10324–10329. https://doi.org/10.1002/anie.201703461
  90. 90. Zheng Y.-W., Chen B., Ye P., Feng K., Wang W., Meng Q.-Y., Wu L.-Z., Tung C.-H. Photocatalytic hyd­rogen-evolu­tion cross-couplings: benzene C–H ami­nation and hyd­ro­xylation // J. Am. Chem. Soc. 2016. V. 138. № 32. P. 10080–10083. https://doi.org/10.1021/jacs.6b05498
  91. 91. Meng L., Zhu X., Hensen E.J.M. Stable Fe/ZSM‑5 nano­­sheet zeolite catalysts for the oxidation of benzene to phenol // ACS Catal. 2017. V. 7. № 4. P. 2709–2719. https://doi.org/10.1021/acscatal.6b03512
  92. 92. Borah P., Ma X., Nguyen K.T., Zhao Y. A Vanadyl com­plex grafted to periodic mesoporous organosilica: a green catalyst for selective hydroxylation of benzene to phenol // Angew. Chem. Int. Ed. 2012. V. 51. № 31. P. 7756–7761. https://doi.org/10.1002/anie.201203275
  93. 93. Xiong F., Lu L., Sun T.-Y., Wu Q., Yan D., Chen Y., Zhang X., Wei W., Lu Y., Sun W.-Y., Li J.J., Zhao J. A bioinspired and biocompatible ortho-sulfiliminyl phenol synthesis // Nat. Commun. 2017. V. 8. ID15912. https://doi.org/10.1038/ncomms15912
  94. 94. Deng D., Chen X., Yu L., Wu X., Liu Q., Liu Y., Yang H., Tian H., Hu Y., Du P., Si R., Wang J., Cui X., Li H., Xiao J., Xu T., Deng J., Yang F., Duchesne P.N., Zhang P., Zhou J., Sun L., Li J., Pan X., Bao X. A sing­le iron site confined in a graphene matrix for the cata­lytic oxidation of benzene at room temperature // Sci. Adv. 2015. V. 1. № 11. Art. ID e1500462. https://doi.org/10.1126/sciadv.1500462
  95. 95. Kuhl N., Hopkinson M.N., Wencel-Delord J., Glorius F. Beyond directing groups: transition-metal-catalyzed C–H activation of simple arenes // Angew. Chem. Int. Ed. 2012. V. 51. № 41. P. 10236–10254. https://doi.org/10.1002/anie.201203269
  96. 96. Yi H., Zhang G., Wang H., Huang Z., Wang J., Singh A.K., Lei A. Recent advances in radical C–H activation/radical cross-coupling // Chem. Res. 2017. V. 117. № 13. P. 9016–9085. https://doi.org/10.1021/acs.chemrev.6b00620
  97. 97. Yamada M., Karlin K.D., Fukuzumi S. One-step selec­tive hydroxylation of benzene to phenol with hydrogen peroxide catalyzed by copper complexes incorporated into mesoporous silica–alumina // Chem. Sci. 2016. V. 7. P. 2856–2863. https://doi.org/10.1039/C5SC04312C
  98. 98. Tian K., Liu W.-J., Zhang S., Jiang H. One-pot syn­thesis of a carbon supported bimetallic Cu–Ag NPs catalyst for robust catalytic hydroxylation of benzene to phenol by fast pyrolysis of biomass waste // Green Chem. 2016. V. 18. P. 5643–5650. https://doi.org/10.1039/C6GC01231K
  99. 99. Wang S.-S., Yang G.-Y. Recent advances in poly­oxo­metalate-catalyzed reactions // Chem. Res. 2015. V.  15. № 11. P. 4893–4962. https://doi.org/10.1021/cr500390v
  100. 100. Khatri P.K., Singh B., Jain S.L., Sain B., Sinha A.K. Cyclotriphosphazene grafted silica: a novel support for immobilizing the oxo-vanadium Schiff base moieties for hydroxylation of benzene // Chem. Commun. 2011. V. 47. P. 1610–1612. https://doi.org/10.1039/C0CC01941K
  101. 101. Tanev P.T., Chibwe M., Pinnavaia T. Titanium-con­taining mesoporous molecular sieves for catalytic oxidation of aromatic compounds // Nature. 1994. V. 368. P. 321–323. https://doi.org/10.1038/368321a0
  102. 102. Vedernikov A.N. Direct functionalization of M–C (M = PtII, PdII) bonds using environmentally benign oxidants, O2 and H2O2 // Acc. Chem. Res. 2012. V. 45. № 6. P. 803–813. https://doi.org/10.1021/ar200191k
  103. 103. Wen G., Wu Sh., Li B., Dai C., Su D.S. Active sites and mechanisms for direct oxidation of benzene to phenol over carbon catalysts // Angew. Chem. Int. Ed. 2015. V. 54. № 13. P. 4105–4109. https://doi.org/10.1002/anie.201410093
  104. 104. Morimoto Y., Bunno S., Fujieda N., Sugimoto H., Itoh S. Direct hydroxylation of benzene to phenol using hydrogen peroxide catalyzed by nickel comp­lexes supported by pyridylalkylamine ligands // J. Am. Chem. Soc. 2015. V. 137. № 18. P. 5867–5870. https://doi.org/10.1021/jacs.5b01814
  105. 105. Hartman M., Machoke A.G., Schwieger W. Catalytic test reactions for the evaluation of hierarchical zeolites // Chem. Soc. Rev. 2016. V. 45. P. 3313–3330. https://doi.org/10.1039/C5CS00935A
  106. 106. Kamata K., Yamaura T., Mizuno N. Chemo- and regio­selective direct hydroxylation of arenes with hyd­rogen peroxide catalyzed by a divanadium-sub­stituted phosphotungstate // Angew. Chem. Int. Ed. 2012. V. 51. № 29. P. 7275–7278. https://doi.org/10.1002/anie.201201605
  107. 107. Leng Y., Wang J., Zhu D., Shen L., Zhao P., Zhang M. Heteropolyanion-based ionic hybrid solid: A green bulk-type catalyst for hydroxylation of benzene with hydrogen peroxide // Chem. Eng. J. 2011. V. 173. № 2. P. 620–626. https://doi.org/10.1016/j.cej.2011.08.013
  108. 108. Li C., Zheng P., Li J., Zhang H., Cui Y., Shao Q., Ji X., Zhang J., Zhao P., Xu Y. The dual roles of oxodiperoxovanadate both as a nucleophile and an oxidant in the green oxidation of benzyl alcohols or benzyl halides to aldehydes and ketones // Angew. Chem. Int. Ed. 2003. V. 42. № 41. P. 5063–5066. https://doi.org/10.1002/anie.200351902
  109. 109. Mimoun H., Saussine L., Daire E., Postel M., Fischer J., Weiss R. Vanadium(V) peroxy complexes. New ver­sa­tile biomimetic reagents for epoxidation of ole­fins and hydroxylation of alkanes and aromatic hyd­ro­car­­bons // J. Am. Chem. Soc. 1983. V. 105. № 10. P. 3101–3110. https://doi.org/10.1021/ja00348a025
  110. 110. Zhou Y., Ma Z., Tang J. Yan N., Du Y., Xi S. Wang K., Zhang W., Wen H., Wang J. Immediate hydroxylation of arenes to phenols via V-containing all-silica ZSM‑22 zeolite triggered non-radical mechanism // Nat. Commun. 2018. V. 9. ID 2931. https://doi.org/10.1038/s41467-018-05351-w
  111. 111. Zhang W., Xie J., Hou W., Liu Y., Zhou Y., Wang J. One-pot template-free synthesis of Cu–MOR zeolite toward efficient catalyst support for aerobic oxidation of 5-hydroxymethylfurfural under ambient pressure //
  112. 112. ACS Appl. Mater. Interfaces. 2016. V. 8. № 36. P. 23122–23132. https://doi.org/10.1021/acsami.6b07675
  113. 113. Shi J., Wang Y., Wang W., Tang Y., Xie Z. Recent advances of pore system construction in zeolite-catalyzed chemical industry processes // Chem. Soc. Rev. 2015. V. 44. P. 8877–8903. https://doi.org/10.1039/C5CS00626K
  114. 114. Sun Q., He H., Gao W.-Y., Aguila B., Woitas L., Dai Z., Li J., Chen Y.-S., Xiao F.-S., Ma S. Imparting am­phi­phobicity on single-crystalline porous materials // Nat. Commun. 2016. V. 7. ID 13300. https://doi.org/10.1038/ncomms13300
  115. 115. Wang L., Wang G., Zhang J., Bian C., Meng X., Xiao F.-S. Controllable cyanation of carbon-hydrogen bonds by zeolite crystals over manganese oxide catalyst // Nat. Commun. 2017. V. 8. ID 15240. https://doi.org/10.1038/ncomms15240
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library